Abstract:
The invention relates to a laser scanning microscope (10) having: focusing means (15) having a focal plane (29) and comprising at least one optical element for focusing a laser beam (13); drive means (18) for displacing the at least one optical element of the focusing means (15) for changing the position of the focal plane (29), and deflecting means (14) for deflecting the laser beam (13). The microscope comprises a control system (32) configured to carry out the steps of: providing a periodical drive signal for the drive means (18); obtaining time dependant displacement data of the at least one optical element of the focusing means (15) in response to the periodical drive signal of the drive means (18); providing a response function (z(t)) using the time dependant displacement data, calculating a drive signal for the deflecting means (14) using the response function (z(t)) to move the focal volume (30) of the laser beam (13) along a given 3D trajectory (48) within a sample to be examined. The invention further relates to a method for carrying out such a scanning operation along a 3D trajectory (48). ˙
Abstract:
The invention relates to an optical microscope system (10) for the simultaneous measurement of at least two spatially distinct regions of interest, characterised by comprising at least two distinct optical measuring heads (12a, 12b, 12c) that can be simultaneously focused on spatially distinct arbitrary regions of interest, each optical measuring head is optically connectable with at least one scan head (14), the optical microscope system further comprising a control system (32) connected to the at least one scan head and the optical measuring head, the control system being configured to provide for synchronised control of the operation of the at least one scan head and the at least two optical measuring head.
Abstract:
The invention relates to a laser scanning microscope (10) having: focusing means (15) having a focal plane (29) and comprising at least one optical element for focusing a laser beam (13); drive means (18) for displacing the at least one optical element of the focusing means (15) for changing the position of the focal plane (29), and deflecting means (14) for deflecting the laser beam (13). The microscope comprises a control system (32) configured to carry out the steps of: providing a periodical drive signal for the drive means (18); obtaining time dependant displacement data of the at least one optical element of the focusing means (15) in response to the periodical drive signal of the drive means (18); providing a response function (z(t)) using the time dependant displacement data, calculating a drive signal for the deflecting means (14) using the response function (z(t)) to move the focal volume (30) of the laser beam (13) along a given 3D trajectory (48) within a sample to be examined. The invention further relates to a method for carrying out such a scanning operation along a 3D trajectory (48). ˙
Abstract:
The present invention relates to a focusing system (100) for focusing an electromagnetic beam for three-dimensional random access applications, the system comprising a first pair of acousto-optic deflectors (10) for focusing an electromagnetic beam in an X-Z plane, and a second pair of acousto-optic deflectors (20) for focusing an electromagnetic beam in a Y-Z plane being substantially perpendicular to the X-Z plane, characterised in that the second pair of acousto-optic deflectors (20) are arranged between the acousto-optic deflectors (12, 12') of the first pair of acousto-optic deflectors (10), such that the first and fourth acousto-optic deflectors (12, 12") of the system belong to the first pair of acousto-optic deflectors (10) and the second and third acousto-optic deflectors (22, 22") of the system belong to the second pair of acousto-optic deflectors (20).