Abstract:
Provided is a complex patterning device. The complex patterning device includes a patterning module, on which a master substrate including a master pattern that contacts and is separated from a target substrate and which forms a plurality of target patterns having a reverse image of the master pattern on the target substrate by applying a pressure onto the target substrate, and a punching module including a punching mold that contacts and is separated from the target substrate, in which the plurality of target patterns are formed, and which divides at least any one of the plurality of target patterns by applying a pressure onto the target substrate.
Abstract:
A method of manufacturing a ceramic dielectric, including: heat-treating a barium precursor or a strontium precursor, a titanium precursor, and a donor element precursor to obtain a conducting or semiconducting oxide, preparing a mixture including the conducting or semiconducting oxide and a liquid-phase acceptor element precursor, and sintering the mixture to form a ceramic dielectric, wherein the ceramic dielectric includes a plurality of grains and a grain boundary between adjacent grains, and wherein the plurality of grains including an insulating oxide comprising an acceptor element derived from the acceptor element precursor.
Abstract:
The present invention relates to a transdermal nano-carrier and, more specifically, to a nano-carrier having a chitosan-based nano-sponge structure. According to the present invention, as a nano-carrier having enhanced transdermal delivery on the basis of a complex containing chitosan is provided, it is possible to effectively deliver drugs, cosmetic materials, etc. into the skin.
Abstract:
The present disclosure relates to a method for preparing a ceramic thermal barrier coating layer including (a) preparing a first suspension in which first oxide particles for thermal barrier coating are dispersed and a second suspension in which second oxide particles for thermal barrier coating are dispersed, respectively; (b) forming a first coating layer on a base material by suspension plasma spraying (SPS) using the first suspension; (c) forming a buffer layer on the first coating layer by the suspension plasma spraying using a mixed suspension of the first suspension and the second suspension; and (d) forming a second coating layer on the buffer layer by the suspension plasma spraying using the second suspension.
Abstract:
An interdigitated electrode patterned multi-layered piezoelectric laminate structure is provided, which comprises: N vertically stacked piezoelectric stacks (N is the integer of 2 or above); wherein the each piezoelectric stack comprises: a piezoelectric sheet; a top electrode pattern on a top of the piezoelectric sheet; and a bottom electrode pattern on a bottom of the piezoelectric sheet, wherein each of the top and bottom electrode patterns has first and second sub-electrode patterns, wherein the first and second sub-electrode patterns are electrically insulated from each other, wherein the first and second sub-electrode patterns are horizontally interdigitated with each other, wherein the first sub-electrode patterns of the top and bottom electrode patterns vertically overlap with each other, wherein the second sub-electrode patterns of the top and bottom electrode patterns vertically overlap with each other, wherein the bottom electrode of the Nth piezoelectric stack is the top electrode of the N-1th piezoelectric stack.
Abstract:
A graphene-containing coating film includes at least one hydrate represented by Chemical Formula 1 as described herein, a graphene positioned in a shape on the surface of the hydrate represented by Chemical Formula 1, and a silica particle positioned on the surface of the hydrate of Chemical Formula 1 and positioned on the surface of the graphene in a shape of discontinuous island. Particularly, the silica particle includes agglomeration of a plurality of silica nanoparticles. A method of preparing the graphene-containing coating film and a vehicle part such as a head lamp including the same are also provided.
Abstract:
An organic-inorganic composite including: a plurality of anisotropic ceramic particles having different aspect ratios; a resin that is combined with the ceramic particles; and a plurality of projections projecting out from the surface of the ceramic particles, thereby increasing the shear resistance of the interface between the ceramic particles and the resin. At least some of the ceramic particles neighboring each other are closely arranged such that the projections partially contact each other, thereby increasing the shear resistance between the ceramic particles due to the contacting ceramic particles.
Abstract:
A graphene oxide-ceramic hybrid coating layer formed from a graphene oxide-ceramic hybrid sol solution that includes graphene oxide (GO) and a ceramic sol and a method of preparing the coating layer are provided. A content of graphene oxide in the graphene oxide-ceramic hybrid coating layer is about 0.002 to about 3.0 wt % based on the total weight of the graphene oxide-ceramic hybrid coating layer.
Abstract:
Provided is a method of manufacturing an anode core-shell complex for a solid oxide fuel cell, including (A) manufacturing a stabilized zirconia (YSZ) sol by using zirconium hydroxide (Zr(OH)4) and yttrium nitrate (Y(NO3)3.6H2O) as a starting material and distilled water as a solvent by a hydrothermal method, (B) agitating nickel chloride, stabilized zirconia in a sol state, and a surfactant, (C) adding sodium hydroxide (NaOH), (D) adjusting a pH to a range of 6 to 8, and (E) sintering the nickel-stabilized zirconia core-shell powder.
Abstract:
The present invention relates to an organic-inorganic nanocomposite having orientation and a polymer resin comprising the same. An organic-inorganic nanocomposite according to the present invention includes inorganic nanoparticles each having one or more hydrogen bondable functional groups; first organic compounds each having two or more hydrogen bondable functional groups and one or more aromatic groups; and second organic compounds each having one or more hydrogen bondable functional groups and one or more aromatic groups, wherein the inorganic nanoparticle, the first organic compound and the second organic compound are bonded sequentially through hydrogen bonds, and the hydrogen-bonded inorganic nanoparticle, first organic compound and second organic compound, are laminated through π-π interaction to have orientation.