Abstract:
A window assembly includes an outer window panel, an inner window panel, a conductive layer disposed at an inner surface of the inner window panel, a spacer element, and a roller shade disposed within an interpane cavity established between the inner and outer window panels by the spacer element. The roller shade has an end fixedly attached at an anchor stop along a perimeter portion of the spacer element. A dielectric layer is disposed between the roller shade and the conductive layer. The roller shade is electrically deployable to coil and uncoil between a coiled light transmitting condition and an at least partially uncoiled light attenuating condition. The roller shade is electrically operable via applying a voltage at the transparent conductive layer and at the anchor stop to uncoil the roller shade from the coiled light transmitting condition to the at least partially uncoiled light attenuating condition.
Abstract:
A vehicular slider window assembly (10) includes upper and lower rails (22, 24), at least one fixed window panel (16, 18) and a movable window panel (20). The lower rail comprises a channel (26) and a guide element (28) received in and secured to the channel. The guide element extends at least partially along the fixed window panel and the opening and the channel extends at least partially along the fixed window panel and beyond an end of the guide element and receives a carrier (30) of the movable window therein during loading of the movable window. The movable window is received in the channel at a first depth during the loading process and is raised to a second depth to generally align the carrier with the guide portion (28a) of the guide element for insertion of the carrier into the guide portion for movement along the guide portion.
Abstract:
An interior rearview mirror assembly for a vehicle includes a mirror reflective element and a video display device operable to display video information that is viewable by a driver of the vehicle through said mirror reflective element and at a display region of said mirror reflective element. The video display device may be operable to display a directional heading at a compass display portion of the display region, and means may be provided to adjust the directional heading display to limit image sticking of the displayed directional heading. The mirror assembly may have a touch zone having at least one touch pad established at a perimeter border band of the reflective element, and may have another touch sensor to detect a touch of a user away from the touch zone to determine when a detected touch at the touch zone is an unintentional touch.
Abstract:
A reflective element assembly for a vehicular mirror assembly includes a front substrate, a rear substrate, an electro-optic medium disposed between the front and rear substrates and a transmission-reducing thin film coating established at the fourth surface of the rear substrate. A window is established through the transmission-reducing thin film coating and is substantially devoid of the thin film coating at a location where a sensor is disposed behind the reflective element and having a field of view through the reflective element and through the window. A portion of the transmission-reducing thin film coating at and around the window locally varies in physical thickness, with a minimum physical thickness of the thin film coating being closest to the window and with the physical thickness of the thin film coating generally increasing to a generally maximum physical thickness of the thin film coating at a distance from the window.
Abstract:
An interior rearview mirror assembly includes a mirror casing, a reflective element and a mounting assembly for adjustably mounting the mirror assembly at an interior portion of a vehicle. The mounting assembly has a mounting base and a mounting arm adjustably mounted to the mounting base via a base joint. The reflective element is pivotally adjustable relative to the mounting arm via a mirror pivot joint. The base joint allows for adjustment of the mounting arm in generally a single plane and about a generally horizontal pivot axis when the mirror assembly is normally mounted in the vehicle, with the base joint limiting adjustment of the mounting arm about non-generally horizontal pivot axes. The mirror pivot joint allows for pivotal adjustment of a rearward field of view of the reflective element by a driver of the vehicle when the mirror assembly is normally mounted in the vehicle.
Abstract:
An acoustical window assembly for a vehicle includes a transparent glass window panel and mounting portions for mounting respective perimeter regions of the window panel to a vehicle structure. A first mounting portion substantially fixedly mounts a first perimeter region of the window panel relative to the vehicle structure, while a second mounting portion mounts a second perimeter region of the window panel to the vehicle structure and includes a flexible element to allow for movement of the second perimeter region of the window panel toward and away from the vehicle structure. An actuating assembly is positioned at an actuating region of the window panel and has a substantially rigid interface element that engages the actuating region of the window panel. The actuating assembly is operable to vibrate the window panel via vibration of the substantially rigid interface element relative to the vehicle structure.
Abstract:
An electro-optic rearview mirror assembly for a vehicle includes a caseless electro- optic rearview mirror reflective element and a plate attached at the rear of the reflective element. The mirror reflective element connected to and pivotal about a windshield electronics module via a ball and socket pivot joint. Control circuitry may be disposed in a windshield electronics module for automatically controlling dimming of the electro-optic medium or alternatively, dimming of the electro-optic medium is automatically controlled via a multifunctional rear backup camera system of the equipped vehicle. Optionally, the control circuitry controls dimming of the electro-optic medium of the mirror reflective element via wiring that passes through the ball and socket pivot joint. Optionally, image data captured by the multifunctional rear backup camera may be used for ambient light determination and to provide video image display at the interior rearview mirror assembly.
Abstract:
An interior rearview mirror assembly for a vehicle includes a mirror head, a mirror mounting structure configured to adjustably mount the mirror head at an interior portion of the vehicle, and a receiving portion for receiving a portable self-contained garage door opening module. The portable module includes a user input and a housing, and is operable to wirelessly transmit a radio frequency signal responsive to actuation of the user input of the portable module. With the portable module received at the receiving portion of the interior rearview mirror assembly, the user input is accessible by a driver of the vehicle. A retaining element is configured to attach to the mirror casing at the receiving portion to releasably secure the portable module at the receiving portion.
Abstract:
A vision system for a vehicle includes an exterior structure mounted at an exterior portion of a body side of the equipped vehicle, with an imaging sensor disposed at the exterior structure and having a field of view exterior and sideward and rearward of the vehicle. A video display screen is disposed in an interior cabin of the equipped vehicle and operable to display video images. Responsive to detection of another vehicle at or near the side of the equipped vehicle, said video display screen displays a graphic overlay at the display screen. The graphic overlay includes a semitransparent overlay having a longitudinally extending line segment that extends along a displayed body side portion of the equipped vehicle and a plurality of laterally extending line segments that extend laterally outwardly from the longitudinally extending line segment at spaced apart intervals along the longitudinally extending line segment.
Abstract:
An exterior rearview mirror assembly includes a non-movable portion, a movable portion and a mirror head. The non-movable portion is configured for attachment at an exterior portion of a vehicle and the movable portion is movable relative to the non-movable portion. The mirror head is movable relative to the movable portion, and a mirror reflective element is fixedly attached at the mirror head. A first actuator is operable to move the movable portion relative to the non-movable portion about a first axis and a second actuator is operable to move the mirror head relative to the movable portion about a second axis. The first and second actuators are cooperatively operable to move the movable portion about the first axis and to move the mirror head about the second axis, and the mirror reflective element moves in tandem with movement of the mirror head.