Abstract:
A vehicular interior rearview mirror assembly includes a mirror head having an interior mirror reflective element. The mirror reflective element has a mirror transflector that transmits near-IR light incident thereon, transmits visible light incident thereon and reflects visible light incident thereon. The mirror assembly includes a camera disposed within the mirror head and viewing through the mirror transflector. The camera includes an imaging sensor having a quantum efficiency (QE) of at least 15% for near-infrared (near-IR) light having a wavelength of 940 nm. The mirror assembly further includes first, second and third near-IR illumination sources disposed within the mirror head and operable to emit near-IR light that passes through the mirror transflector. The near-IR illumination sources are at respective angles relative to a planar front surface of the mirror reflective element and, when powered, illuminate respective in-cabin regions for a driver monitoring function or an occupant detection function.
Abstract:
An electro-optic rearview mirror assembly for a vehicle includes a caseless electro- optic rearview mirror reflective element and a plate attached at the rear of the reflective element. The mirror reflective element connected to and pivotal about a windshield electronics module via a ball and socket pivot joint. Control circuitry may be disposed in a windshield electronics module for automatically controlling dimming of the electro-optic medium or alternatively, dimming of the electro-optic medium is automatically controlled via a multifunctional rear backup camera system of the equipped vehicle. Optionally, the control circuitry controls dimming of the electro-optic medium of the mirror reflective element via wiring that passes through the ball and socket pivot joint. Optionally, image data captured by the multifunctional rear backup camera may be used for ambient light determination and to provide video image display at the interior rearview mirror assembly.
Abstract:
A vision system for a vehicle includes an exterior structure mounted at an exterior portion of a body side of the equipped vehicle, with an imaging sensor disposed at the exterior structure and having a field of view exterior and sideward and rearward of the vehicle. A video display screen is disposed in an interior cabin of the equipped vehicle and operable to display video images. Responsive to detection of another vehicle at or near the side of the equipped vehicle, said video display screen displays a graphic overlay at the display screen. The graphic overlay includes a semitransparent overlay having a longitudinally extending line segment that extends along a displayed body side portion of the equipped vehicle and a plurality of laterally extending line segments that extend laterally outwardly from the longitudinally extending line segment at spaced apart intervals along the longitudinally extending line segment.
Abstract:
An electro-optic rearview mirror assembly for a vehicle includes a caseless electro-optic rearview mirror reflective element and a plate attached at the rear of the reflective element. The mirror reflective element connected to and pivotal about a windshield electronics module via a ball and socket pivot joint. Control circuitry may be disposed in a windshield electronics module for automatically controlling dimming of the electro-optic medium or alternatively, dimming of the electro-optic medium is automatically controlled via a multifunctional rear backup camera system of the equipped vehicle. Optionally, the control circuitry controls dimming of the electro-optic medium of the mirror reflective element via wiring that passes through the ball and socket pivot joint. Optionally, image data captured by the multifunctional rear backup camera may be used for ambient light determination and to provide video image display at the interior rearview mirror assembly.
Abstract:
A vision system for a vehicle includes an exterior structure mounted at an exterior portion of a body side of the equipped vehicle, with an imaging sensor disposed at the exterior structure and having a field of view exterior and sideward and rearward of the vehicle. A video display screen is disposed in an interior cabin of the equipped vehicle and operable to display video images. Responsive to detection of another vehicle at or near the side of the equipped vehicle, said video display screen displays a graphic overlay at the display screen. The graphic overlay includes a semitransparent overlay having a longitudinally extending line segment that extends along a displayed body side portion of the equipped vehicle and a plurality of laterally extending line segments that extend laterally outwardly from the longitudinally extending line segment at spaced apart intervals along the longitudinally extending line segment.