Abstract:
A vehicular imaging and display system (10) includes a rear backup camera (12) at a rear portion of a vehicle (14), a video processor (18) for processing image data captured by the rear camera, and a video display screen (16) responsive to the video processor to display video images. During a reversing maneuver of the equipped vehicle, the video display screen displays video images captured by the rear camera. During forward travel of the equipped vehicle, the video display screen is operable to display images representative of a portion of the field of view of the rear camera to display images representative of an area sideward of the equipped vehicle responsive to at least one of (a) actuation of a turn signal indicator of the vehicle, (b) detection of a vehicle in a side lane adjacent to the equipped vehicle and (c) a lane departure warning system of the vehicle.
Abstract:
A vehicular vision system includes an electronic control unit (ECU), a plurality of exterior viewing vehicle cameras that capture image data and provide captured image data to the ECU. When the vehicle is towing a trailer, a rearward-viewing trailer camera captures image data and provides captured image data to the ECU. A video mirror display screen is disposed at an interior rearview mirror assembly of the vehicle and is operable to display video images derived from video image data provided from the ECU. The mirror assembly is adjustable between a mirror mode and a display mode. The mirror assembly, when in the display mode, is operable by the driver of the vehicle to display at the video mirror display screen (i) a single image display of video images, (ii) a dual image display of video images or (iii) a three image display of video images.
Abstract:
An interior rearview mirror assembly for a vehicle includes a mirror reflective element and a video display device operable to display video information that is viewable by a driver of the vehicle through said mirror reflective element and at a display region of said mirror reflective element. The video display device may be operable to display a directional heading at a compass display portion of the display region, and means may be provided to adjust the directional heading display to limit image sticking of the displayed directional heading. The mirror assembly may have a touch zone having at least one touch pad established at a perimeter border band of the reflective element, and may have another touch sensor to detect a touch of a user away from the touch zone to determine when a detected touch at the touch zone is an unintentional touch.
Abstract:
An electro-optic rearview mirror assembly for a vehicle includes a caseless electro- optic rearview mirror reflective element and a plate attached at the rear of the reflective element. The mirror reflective element connected to and pivotal about a windshield electronics module via a ball and socket pivot joint. Control circuitry may be disposed in a windshield electronics module for automatically controlling dimming of the electro-optic medium or alternatively, dimming of the electro-optic medium is automatically controlled via a multifunctional rear backup camera system of the equipped vehicle. Optionally, the control circuitry controls dimming of the electro-optic medium of the mirror reflective element via wiring that passes through the ball and socket pivot joint. Optionally, image data captured by the multifunctional rear backup camera may be used for ambient light determination and to provide video image display at the interior rearview mirror assembly.
Abstract:
A video mirror system for a vehicle comprising an interior rearview mirror assembly having a transflective electro-optic reflective element that transmits at least about ten percent of visible light incident thereon and reflects at least about sixty percent of visible light incident thereon. A display module is disposed at a rear of the transflective electro-optic reflective element and comprises a plurality of individual light sources. A thermally conductive element may be in substantial thermal contact with the display module and is exposed at a rear casing portion of the mirror assembly so as to draw heat generated by the display module away from the display module and to the exterior of the interior rearview mirror assembly. The exposure of the thermally conductive element at the rear casing portion may be substantially not discernible to a viewer viewing the rear casing portion of the interior rearview mirror assembly.
Abstract:
A vehicular imaging and display system includes a rear backup camera at a rear portion of a vehicle, a video processor for processing image data captured by the rear camera, and a video display screen responsive to the video processor to display video images. During a reversing maneuver of the equipped vehicle, the video display screen displays video images captured by the rear camera. During forward travel of the equipped vehicle, the video display screen is operable to display images representative of a portion of the field of view of the rear camera to display images representative of an area sideward of the equipped vehicle responsive to at least one of (a) actuation of a turn signal indicator of the vehicle, (b) detection of a vehicle in a side lane adjacent to the equipped vehicle and (c) a lane departure warning system of the vehicle.
Abstract:
An electro-optic rearview mirror assembly for a vehicle includes a caseless electro-optic rearview mirror reflective element and a plate attached at the rear of the reflective element. The mirror reflective element connected to and pivotal about a windshield electronics module via a ball and socket pivot joint. Control circuitry may be disposed in a windshield electronics module for automatically controlling dimming of the electro-optic medium or alternatively, dimming of the electro-optic medium is automatically controlled via a multifunctional rear backup camera system of the equipped vehicle. Optionally, the control circuitry controls dimming of the electro-optic medium of the mirror reflective element via wiring that passes through the ball and socket pivot joint. Optionally, image data captured by the multifunctional rear backup camera may be used for ambient light determination and to provide video image display at the interior rearview mirror assembly.
Abstract:
A vehicular imaging and display system includes a rear backup camera at a rear portion of a vehicle, a video processor for processing image data captured by the rear camera, and a video display screen responsive to the video processor to display video images. During a reversing maneuver of the equipped vehicle, the video display screen displays video images captured by the rear camera. During forward travel of the equipped vehicle, the video display screen is operable to display images representative of a portion of the field of view of the rear camera to display images representative of an area sideward of the equipped vehicle responsive to at least one of (a) actuation of a turn signal indicator of the vehicle, (b) detection of a vehicle in a side lane adjacent to the equipped vehicle and (c) a lane departure warning system of the vehicle.