Abstract:
Microfluidic biofuel cells comprising a bioanode and/or a biocathode are formed using microfluidic principles and soft lithography. The enzymes utilized in the redox reactions at the bioanode and/or the biocathode are stabilized in a micellar or inverted micellar structure. The biofuel cell is used to produce high power densities.
Abstract:
The present invention is based upon correlation of two attenuating lesions of the cp45 strain to specific defects in the genome of cp45. Specifically, a significant level of attenuation of cp45, resulting from its temperature-sensitive and cold-adapted phenotypes is associated with mutation of the L gene of cp45. A second mutation in the gene coding for hemagglutinin-neuraminidase (HN) in the cp45 strain has also been found to be another attenuating mutation. The correlation of these two attenuating lesions of cp45 to specific genes enables several practical applications. It is now possible to create attenuated vaccines directed at other wild-type HPIV-3 viruses and other viruses other than HPIV-3 by incorporating the mutated L and/or HN genes of cp45 in to a target virus genome or alternatively, expressing surface antigen genes from other viruses in cp45.
Abstract:
A system for use during a medical or surgical procedure on a body. The system generates an image representing the position of one or more body elements during the procedure using scans generated by a scanner prior or during the procedure. The image data set has reference points for each of the body elements, the reference points of a particular body element having a fixed spatial relation to the particular body element. The system includes an apparatus for identifying, during the procedure, the relative position of each of the reference points of each of the body elements to be displayed. The system also includes a processor for modifying the image data set according to the identified relative position of each of the reference points during the procedure, as identified by the identifying apparatus, said processor generating a displaced image data set representing the position of the body elements during the procedure. The system also includes a display utilizing the displaced image data set generated by the processor, illustrating the relative position of the body elements during the procedure. Methods relating to the system are also disclosed. Also disclosed are devices for use with a surgical navigation system having a sensor array which is in communication with the device to identify its position. The device may be a reference frame for attachment of a body part of the patient, such as a cranial reference arc frame for attachment to the head or a spine reference arc frame for attachment to the spine. The device may also be a localization frame for positioning an instrument relative to a body part, such as a localization biopsy guide frame for positioning a biopsy needle, a localization drill guide assembly for positioning a drill bit, a localization drill yoke assembly for positioning a drill, or a ventriculostomy probe for positioning a catheter.
Abstract:
A system for determining a position of a probe (302) relative to an object such as a head (390) of a body of a patient. The head includes a surface such as a forehead (394) having a contour. The head is placed in a cradle (392) equipped with an arc (393). The cross-sectional images of the head are determined relative to the arc. A hand-held unit (380) optically scans the forehead and the arc. During scanning to generate the cross-sectional images, the optical scanner (380) is used to determine the position of the forehead (394) relative to the cradle (392). During surgery, the optical scanner (380) also determines the position of the forehead (394) relative to a base ring (306). An array (300) for receiving radiation emitted from the probe (302) and from the base ring (306) generates signals indicating the position of the tip of the probe (302) relative to the base ring (306). A stereotactic imaging system selects and displays the image of the head closest to the measured position of the tip of the probe (302).
Abstract:
Devices having the capability to both locate and retrieve objects are disclosed. More particularly, the present disclosure relates to devices having a probe comprising an ultrasound detector for locating and a grasper for retrieving objects from a medium. The present disclosure further relates to devices having a probe comprising an electromagnetic detector for locating and a grasper for retrieving metallic objects from a medium. Devices of the present disclosure are specifically adapted for use as medical devices for locating and retrieving a foreign body in a subject in need.
Abstract:
Disclosed are methods for detecting cellulose in cellulosic materials and producing alcohol using cellulosic materials. More particularly, disclosed are methods for producing alcohol in a cell-free system by contacting pyruvate with enzymes from a minimal enzymatic pathway. Also disclosed are methods of producing pyruvate by culturing a microorganism under hypoxic conditions. Disclosed are methods for detecting cellulose in a sample using Congo red dye.
Abstract:
This is a system for determining a position of a probe (302) relative to an object such as a head of a body of a patient. The head includes a surface such as a forehead having a contour. Cross-sectional images of the head are scanned and stored as a function of the forehead contour. If the forehead contour does not appear in the scan images, then the position of the forehead contour relative to the scan images is determined with an optical scanner (380) and ring (590). During surgery, the optical scanner (380) also determines the position of the tip of the forehead relative to the ring (590). An array (300) for receiving radiation emitted from the probe and from the ring generates signals indicating the position of the tip (301) of the probe (302) relative to the ring (590). A stereo-tactic imaging system (324) generates and displays an image of the head corresponding to the measured position of the tip (301) of the probe (302).
Abstract:
The present invention provides methods for inhibiting or blocking TGF-β activity in cells and/or tissues expressing TGF-β comprising, contacting cells and/or tissues expressing TGF-β with an amount of cholesterol or cholesterol derivative effective to inhibit the activity of TGF-β. The present invention further provides a method for treating a condition associated with overactivity of TGF-β or negative regulation in normal physiology by TGF-β in a subject in need of treatment, comprising contacting cells and/or tissue overexpressing TGF-β in the subject with an amount of cholesterol or cholesterol derivative effective to inhibit activity of TGF-β thereby treating the condition. In a preferred embodiment, the cholesterol derivative is oxidized 7-DHC.
Abstract:
The present invention provides methods for promoting hair growth and/or treating or preventing hair loss (alopecia) by contacting the cells with a TGF-β antagonist or inhibitor either alone or in combination with other alopecia-inhibiting compounds.