Abstract:
In einer integrierten Halbleiterschaltung integrierter elektrischer Widerstand, aufweisend: einen Nutzwiderstand mit zwei voneinander beabstandeten Nutzwiderstandsanschlußkontaktzonen (21,27) und einer dazwischen befindlichen Nutzwiderstandszone (17,19) aus Halbleitermaterial; und einen Hilfswiderstand mit zwei voneinander beabstandeten Hilfswiderstandsanschlußkontaktzonen (29,29a) und einer dazwischen befindlichen Hilfswiderstandszone (13); wobei die Hilfswiderstandszone (13) in unterhalb der Nutzwiderstandszone (17,19) befindlichem Halbleitermaterial gebildet ist; zwischen Nutzwiderstandszone (17,19) und Hilfswiderstandszone (13) eine Zwischenzone (41,43) vorhanden ist; die Nutzwiderstandszone (17,19) und die Hilfswiderstandszone (13) eine im wesentlichen übereinstimmende Topographie aufweisen; und die Hilfswiderstandsanschlußkontaktzonen (29, 29a) und die Nutzwiderstandsanschlußkontaktzonen (21, 27) derart beschaltet sind, daß bei Anschluß der Halbleiterschaltung an eine Versorgungsspannungsquelle die Hilfswiderstandsanschlußkontaktzone (29) an einem Ende der Hilfswiderstandszone (13) und die Hilfswiderstandsanschlußkontaktzone (29a) am anderen Ende der Hilfswiderstandszone (13) je die gleiche Potentialdifferenz gegenüber der je benachbarten Nutzwiderstandsanschlußkontaktzone (21, 27) aufweisen.
Abstract:
Überwachungsschaltung für ein Datenübertragungsnetz mit einer Mehrzahl von sende- und empfangsfähigen Netzknoten und mit einem die Netzknoten verbindenden, der redundanten Doppelübertragung von digitalen Nachrichten dienenden Doppelleitungsbus mit einer ersten Leitung (A) und einer zweiten Leitung (B), über welche in Form von zeitlich voneinander beabstandeten Impulsfolgen übertragene Nachrichtenimpulse zeitlagenmäßig gleichlaufend übertragen werden, wobei mindestens ein Teil der Netzknoten den Empfang der jeweiligen Impulsfolge durch das Senden eines Bestätigungsimpulses während einer vorbestimmten, für alle Netzknoten gleichen Zeitlage bestätigt; in mindestens einem Teil der Netzknoten die erste Leitung (A) über einen ersten Widerstand (RA) mit einer netzknoteneigenen Betriebspotentialquelle (VK) und über einen ersten steuerbaren Schalter (SA) mit einer Bezugspotentialquelle (GND) und die zweite Leitung (B) über einen zweiten Widerstand (RB) mit der Bezugspotentialquelle (GND) und über einen steuerbaren zweiten Schalter (SB) mit der Bertriebspotentialquelle (VK) verbunden ist; die beiden Schalter (SA, SB) zum Senden eines Nachrichtenimpulses eines ersten Logikwertes gleichzeitig nichtleitend und zum Senden eines Nachrichtenimpulses eines zweiten Logikwertes gleichzeitig leitend gesteuert werden; eine Potentialwechseldetektoreinrichtung (CA, CB) vorgesehen ist, mittels welcher die beiden Leitungen (A, B) je auf das Vorliegen von Potentialwechselaktivitäten überwachbar sind und mittels welcher ein Zustand detektierbar ist, in welchem während einer Impulsfolge Potentialwechselaktivitäten nur auf der ersten Leitung (A), nicht jedoch auf der zweiten Leitung (B) auftreten; und eine erste Zeitmeßeinrichtung (Z0) vorgesehen ist, mittels welcher eine zeitliche Messung der Dauer eines solchen Zustandes durchführbar ist und mittels welcher beim Überschreiten einer vorbestimmten Zeitdauer eines solchen Zustands ein Fehlersignal (E) erzeugbar ist, in Abhängigkeit von welchem die zweiten Schalter (SB) mindestens eines Teils der Netzknoten zwangsweise nichtleitend steuerbar sind.
Abstract:
In einer integrierten Schaltung mit einem sogenannten "geschalteten" Kondensator (C S ) wird letzterer durch eine Parallelschaltung aus zwei komplementären Schalttransistoren (1, 2) mit zueinander komplementären Schaltimpulszügen geschaltet. Durch parasitäre Effekte bei diesem Schaltvorgang kommt es an dem geschalteten Kondensator zu störenden Offset-Spannungen. Um diese zu vermeiden, werden die Flanken des einen Schaltimpulszuges (ϕn) gegenüber den entsprechenden Flanken des komplementären Schaltimpulszuges (ϕp) zeitlich verschoben. Hierzu enthält ein Schaltimpulsgeber ein Verzögerungsglied, dem ein Stellsignal zugeführt wird, welches mit Hilfe einer konstanten Referenzspannung unter Verwendung einer Nachbildung derjenigen Schaltung gebildet wird, die den geschalteten Kondensator (C S ) enthält.
Abstract:
Bei einem voll integrierten logarithmischen Verstärker wird ein Eingangsstrom über eine Diode (19) geleitet, und in einem dazu parallelen Referenzstromzweig (59) fließt ein konstanter Strom (I1) durch eine ähnliche Diode (35). Aus der Differenzspannung zwischen den beiden Dioden bildet ein Spannungsteiler (23, 25) eine Teilspannung an einem veränderlichen Widerstand (25) des Spannungsteilers, die von einem Differenzverstärker (31) zur Bildung des Ausgangssignals (Ilog) verarbeitet wird. Parallel zu den beiden erwähnten Stromzweigen (15, 59) liegt ein weiterer Stromzweig (63) mit einer Konstantstromquelle und einer Diode (41). Die Differenzspannung zwischen der Diode (35) des Referenzstromzweigs und der Diode (41) in dem zusätzlichen Stromzweig wird ebenfalls von einem Spannungsteiler geteilt. Ein Differenzverstärker (47) bildet aus der Spannung an dem veränderlichen Widerstand des Spannungsteilers ein Fehlersignal, welches sowohl den veränderlichen Widerstand verändert, aus dem der Differenzverstärker das Fehlersignal gebildet hat, als auch den Widerstand des veränderlichen Widerstands ändert, von dem das Ausgangssignal (Ulog) gebildet wird. Da die Spannung an den beiden veränderlichen Widerständen jedes Spannungsteilers temperaturunabhängig ist, ist auch das Ausgangssignal des Verstärkers temperaturunabhängig.
Abstract:
Flankensteuervorrichtung für ein elektrisches Datenübertragungssystem mit einer ersten Leitung (A) und einer zweiten Leitung (B) zur differenzmäßigen Übertragung von binären Datenimpulsen in der Form, daß einem ersten Logikwert ("1") der Datenimpulse ein hohes Potential (5V) auf der ersten Leitung (A) und ein niedriges Potential (0V) auf der zweiten Leitung (B) und einem zweiten Logikwert ("0") der Datenimpulse ein niedriges Potential (0V) auf der ersten Leitung (A) und ein hohes Potential (5V) auf der zweiten Leitung (B) zugeordnet sind, wobei die Flankensteuervorrichtung derart ausgebildet ist, daß sie die Flankensteilheit des Potentialverlaufs einer ersten der beiden Leitungen (A, B) auf einen Sollwert regelt; die Flankensteilheit des Potentialverlaufs auf der einen Leitung mit der Flankensteilheit des Potentialverlaufs auf der anderen Leitung vergleicht; und die Flankensteilheit des Potentialverlaufs der zweiten Leitung in Abhängigkeit von dem Vergleichsergebnis steuert.
Abstract:
Fehlerprüfung für ein elektrisches Datenübertragungssystem mit zwei Leitungen (A, B) verwendender differenzmäßiger Übertragung von binären Datenimpulsen, wobei die Signale auf beiden Leitungen (A, B) je differenziert werden, die resultierenden Differentialsignale (VtA, VtB) und ein Referenzsignal (Vct) zu einem Summensignal (Vres) summiert werden, das Summensignal (Vres) mit dem Referenzsignal (Vct) einerseits und die beiden Differentialsignale (VtA, VtB) mit dem Summensignal (Vres) andererseits verglichen werden und aus dem Ergebnis dieser Vergleiche Fehlersignale (FI, FII, FIII) erzeugt werden, wein Leitungsfehler bestimmter Art vorliegen.
Abstract:
Elektrische Schaltungsanordnung zur Formung der Flankensteilheit einer an einem Ausgangsanschluß (OUT) auftretenden impulsförmigen Ausgangsspannung (Vout) und zur Erkennung eines Kurzschlusses an dem Ausgangsanschluß (OUT), aufweisend: eine umschaltbare Regelschaltung (C1, C2, T1, T2, OPV, SW1, SW2, SW4), mittels welcher die Flankensteilheit der Ausgangsspannung (Vout) in einem ersten Schaltzustand in Abhängigkeit von einem an einem internen Widerstand (Ri) auftretenden Spannungsverlauf steuerbar und in einem zweiten Schaltzustand in Abhängigkeit von dem Ausgangsspannungsverlauf regelbar ist und die sich in einem dritten Schaltzustand in einem im wesentlichen stromlosen Zustand befindet; eine Detektorschaltung (COMP, Cst, OFFSET), die ein Detektionssignal (SC = "0") liefert, wenn die Ausgangsspannung (Vout) um mindestens einen vorbestimmten Wert von dem vor Flankenbeginn auftretenden Ausgangsspannungswert abweicht; und eine Timerschaltung (Z, N, A), mittels welcher die Regelschaltung eine vorbestimmte Zeitdauer (tsw) nach Flankenbeginn vom ersten in den zweiten Schaltzustand umschaltbar ist, wenn zu diesem Zeitpunkt das Detektionssignal (SC = "0") vorliegt, und vom ersten in den dritten Schaltzustand, wenn zu diesem Zeitpunkt das Detektionssignal nicht vorliegt (SC = "1").
Abstract:
Gleichspannungswandler zur Gleichspannungsherabwandlung, mit zwei Eingangsanschlüssen (E1, E2) zum Anschließen an eine Eingangsgleichspannungsquelle hohen Spannungswertes; mit zwei Ausgangsanschlüssen (A1, A2) zum Abnehmen einer geregelten niedrigen Ausgangsgleichspannung; mit einer einen Mittenabgriff (MA) aufweisenden Spule (TS), die einen Endes (TA1) über eine elektronische Schaltereinrichtung (MOS) mit einem ersten (E1) der Eingangsanschlüsse und anderen Endes (TA2) über einen ersten Kondensator (C1) mit dem zweiten Eingangsanschluß (E2) verbunden ist; wobei die Ladespannung des ersten Kondensators (C1) die Ausgangsgleichspannung bildet; mit einem zweiten Kondensator (C6), der einen Endes mit einem zwischen Schalteinrichtung (MOS) und Spule (TS) befindlichen Schaltungsknoten und anderen Endes über eine erste Diode (D2) mit dem Mittenabgriff (MA) verbunden ist; mit einer Steuereinrichtung (EV, PWM) mittels welcher die Ladespannung des zweiten Kondensators (C6) mit einer Referenzspannung (REF) vergleichbar und die Schaltereinrichtnung (MOS) mit einer von dem Vergleichsergebnis abhängenden pulsfrequenz- und/oder pulsbreitenmodulierten Schaltimpulsfolge leitend und nicht-leitend schaltbar ist; und mit einer zweiten Diode (D1), die zwischen den Mittenabgriff (MA) und den zweiten Eingangsanschluß (E2) geschaltet ist; wobei die beiden Dioden (D1, D2) derart gepolt sind, daß sie bezüglich des bei nicht-leitend geschalteter Schaltereinrichtung (MOS) am Mittenabgriff (MA) auftretenden Potentials zum zweiten Kondensator (C6) hin bzw. vom zweiten Eingangsanschluß (E2) weg leitend sind.