Abstract:
본 발명은 구배고분자(gradient polymer)를 이용한 탄소나노튜브(carbon nanotube; CNT)의 분산 방법 및 그 방법으로 제조된 탄소나노튜브 분산용액에 관한 것으로, 용매에서의 탄소나노튜브의 용해성과 분산성을 향상시키기 위한 것이다. 본 발명에 따르면, 전이금속 화합물(M t n+ X n )과 리간드(L)를 포함하는 전이금속 착물을 서로 다른 두가지의 단량체가 포함된 유기화합물과 함께 용매 내에서 원자이동 라디칼 중합(Atom Transfer Radical Polymerization)으로 형성된 유기 라디칼을 이용하여 구배고분자(gradient polymer)를 형성한다. 구배고분자는 아로마틱계를 포함하고 있으며 용매내에서 탄소나노튜브와 함께 넣고 분산하면, 구배고분자는 탄소나노튜브와 비공유결합하여 용매 내에서 탄소나노튜브를 분산시킨다. 구배고분자, 탄소나노튜브, 분산, 수용액, 비공유
Abstract:
본 발명은 스타이렌(styrene)과 디메틸아미노에틸메타아클레이트(dimethyl amino ethyl methacrylate)로 이루어진 랜덤 고분자(random copolymer)를 이용한 탄소나노튜브(CNT, carbon nanotube)의 분산 방법 및 그 방법으로 제조된 탄소나노튜브 분산용액에 관한 것으로, 유기 용매에서의 탄소나노튜브의 용해성과 분산성을 향상시키기 위한 것이다. 본 발명에 따르면, 전이금속 화합물(M t n+ X n )과 리간드(L)를 포함하는 전이금속 착물을 유기물과 함께 유기 용매내에서 원자이동라디칼반응(Atom Transfer Radical Polymerization)으로 랜덤 고분자(random copolymer)를 준비한다. 랜덤 고분자는 스타이렌을 포함하고 있으며 유기용매 내에서 탄소나노튜브와 함께 넣고 분산하면, 랜덤 고분자와 탄소나노튜브와 비공유결합하여 유기용매 내에서 탄소나노튜브를 분산시킨다.
Abstract:
PURPOSE: A method for manufacturing a substrate having a carbon nanotube conductive layer with an improved adhesive property and to improve properties of the carbon nanotube conductive layer by physically and chemically bonding carbon nanotubes and polyimide precursors. CONSTITUTION: A method for manufacturing a substrate having a carbon nanotube conductive layer with an improved adhesive property comprises: a base coating step(S23) for forming a polyimide precursor layer by coating a base substrate with a polyimide precursor; a carbon nanotube coating step(S25) for forming a carbon nanotube layer by coating the polyimide precursor layer with a carbon nanotube solution; and a curing step(S27) for forming a polyimide layer and a carbon nanotube conductive layer by curing the polyimide precursor layer and the carbon nano tube layer.
Abstract:
본 발명은 FED 소자의 전계 방출용 탄소나노튜브 제조를 위해 금속 나노 입자를 기판 상에 적층한 후 열처리하여 나노입자 사이에 공극을 형성한 후 그 상부에 탄소나노튜브 잉크젯팅을 하여 탄소나노튜브의 일단이 공극사이에 물리적으로 끼게(anchoring)한 후 후열처리하여 금속나노입자들이 서로 연결되면서 탄소나노튜브들의 일단을 잡아주어 탄소나노튜브의 접착력을 향상시키고, 전계 방출 능력이 개선된 구조를 얻을 수 있도록 하는 금속 나노 입자를 이용한 전계 방출 소자 및 그 제조 방법에 관한 것이다. 본 발명에 따르는 금속 나노 입자를 이용한 전계 방출 소자는, 수계 잉크를 제공하는 단계; 기판상에 상기 수계 잉크로 패턴을 인쇄하는 단계; 인쇄된 상기 패턴을 열처리 및 경화하여 공극을 형성시키는 단계; 공극이 형성된 상기 패턴 상에 탄소나노튜브 조성물을 인쇄하는 단계; 탄소나노튜브 조성물이 인쇄된 상기 기판을 후열처리하는 단계; 후열처리된 상기 기판을 활성화하는 단계에 의해 구성되는 것을 특징으로 한다. 수계 잉크, 탄소 나노 튜브, 전계 방출 소자, 금속 나노 입자
Abstract:
PURPOSE: A method for dispersing carbon nanotubes using a gradient polymer is provided to smoothly decentralize a carbon nanotube in an organic solvent by performing a noncovalent bond of a gradient polymer containing aromatic materials. CONSTITUTION: A method for dispersing carbon nanotubes using a gradient polymer comprises the steps of: preparing an organic compound forming organic radicals; mixing the organic compound and a transition metal complex containing a transition metal oxide(Mtn+Xn) and ligand(L); forming a gradient polymer with organic radicals by polymerizing the mixture according to Atom Transfer Radical Polymerization; dispersing the gradient polymer in a carbon nanotube to performing a noncovalent bond of the gradient polymer and the carbon nanotube, and dispering the carbon nanotube in the organic solvent.
Abstract:
PURPOSE: A purity improvement method of a water-dispersed carbon nanotube solution, and the water-dispersed carbon nanotube solution manufactured therefrom are provided to use an organic solvent for selectively remove a surplus dispersing agent. CONSTITUTION: A purity improvement method of a water-dispersed carbon nanotube solution comprises the following steps: mixing a raw material water-dispersible carbon nanotube solution(10) containing a surplus dispersing agent(18), with an organic solvent(20) to form a mixed solution; rotating the mixed solution to form a colloid particle with the surplus dispersing agent around a particle of the raw material water-dispersible carbon nanotube solution; phase separating the water-dispersible carbon nanotube solution(10a) from the organic solvent, for extracting the colloid particle; and separating the water-dispersible carbon nanotube solution.
Abstract:
A method of manufacturing cold cathode using the jet printing method is provided to strongly adhere the carbon nanotube to a substrate by the thermal budget by using a bonding layer. The carbon nanotube solution is prepared. The carbon nanotube solution is jet-printed on the substrate. In a stand-by process, surfactant and carbon nanotube are mixed with water. The carbon nanotube is dispersed by ultrasonic wave. The organic solvent is the mixture of the isopropanol and water. And the water is a rate of 10~90 wt.%. After the dispersion step, the biocide and the additive including moisturizing agent are added in the mixture.
Abstract:
A micro pattern transfer apparatus capable of varying a line width is provided to control a contact area between a substrate and a probe by using elasticity of a probe support unit and a connection unit of the probe, thereby forming a micro pattern on the substrate as controlling the line width. A first ink keeping unit(320) contains ink. A probe unit(310) includes a hole and a probe. The hole transfers ink, applied from the first ink keeping unit, onto a substrate(350). The probe is for opening/closing the hole. A probe support unit fixes the probe unit to a lower part of the first ink keeping unit. An optical unit(330) includes a CCD(Charge Coupled Device) camera for confirming a location and processing state of the probe unit.
Abstract:
PURPOSE: A method of manufacturing a cathode electrode in a field emission surface light source reduces process time and costs by selecting and spreading an electrode unit and/or a non-electrode unit when a carbon nanotube ink layer is formed. CONSTITUTION: An electroless plating layer (120) is formed by electroless-plating a substrate. An electrode pattern (130) divided into an electrode unit and a non-electrode unit is formed on the electroless plating layer. A first metal layer (140) is formed on the electrode unit by performing first electroplating. A second metal layer (150) is formed on the first metal layer through second electroplating. A carbon nanotube ink layer (160) is formed on the electrode unit, or the carbon nanotube ink layer is formed on the electrode unit and the non-electrode unit. The non-electrode unit is removed.