이중금속―탄소나노튜브 혼성촉매 및 이의 제조방법
    51.
    发明授权
    이중금속―탄소나노튜브 혼성촉매 및 이의 제조방법 有权
    双金属碳纳米管混合催化剂及其制备方法

    公开(公告)号:KR100965834B1

    公开(公告)日:2010-06-25

    申请号:KR1020090072165

    申请日:2009-08-05

    Abstract: PURPOSE: A double metal - carbon nanotube, a hybrid catalyst and a manufacturing method thereof are provided to improve hydrogen generation efficiency in comparison with the same mass of the double metal - carbon nanotube hybrid catalyst by remarkably improving catalyst activity property. CONSTITUTION: The double metal - carbon nanotube hybrid catalyst comprises more than 2 kind of transition metals selected from a group consisting of Mn, Ni, Cu, Mo, Tc, Ru, Rh, Pd, Ag, Re, Os, Ir or Pt. The hydrogen can be occurred from the ammonia borane(NH3BH3) aqueous solution because the solution is distributed in the carbon nanotube in which the nitrogen is contained. A manufacturing method of the double metal - carbon nanotube hybrid catalyst comprises a step for manufacturing a carbon nanotube solution by adding the carbon nanotube in a polyoll solution, a step for reducing the carbon nanotube with sodium borohydride, and a step for manufacturing the double metal - carbon nanotube hybrid catalyst capable of making hydrogen from an ammonia borane aqueous solution.

    Abstract translation: 目的:提供双重金属 - 碳纳米管,杂化催化剂及其制造方法,通过显着提高催化剂活性特性,与同质量的双金属 - 碳纳米管混合催化剂相比,提高氢气生成效率。 构成:双金属 - 碳纳米管混合催化剂包含选自Mn,Ni,Cu,Mo,Tc,Ru,Rh,Pd,Ag,Re,Os,Ir或Pt中的2种以上的过渡金属。 由于溶液分布在含有氮的碳纳米管中,因此可以从氨硼烷(NH 3 BH 3)水溶液中发生氢。 双金属 - 碳纳米管混合催化剂的制造方法包括通过在多孔溶液中添加碳纳米管制造碳纳米管溶液的步骤,用硼氢化钠还原碳纳米管的步骤和制造双金属的步骤 - 能够从氨硼烷水溶液制造氢的碳纳米管混合催化剂。

    니켈―질화탄소 구체의 제조방법 및 그 방법에 의해 제조된 니켈―질화탄소 구체
    52.
    发明授权
    니켈―질화탄소 구체의 제조방법 및 그 방법에 의해 제조된 니켈―질화탄소 구체 有权
    制备镍碳化物球体及其碳化碳球体的方法

    公开(公告)号:KR100957128B1

    公开(公告)日:2010-05-11

    申请号:KR1020090073899

    申请日:2009-08-11

    Abstract: PURPOSE: A manufacturing method of a nickel-carbon nitride sphere and the nickel-carbon nitride sphere manufactured therefrom are provided to control the shape of the nickel-carbon nitride sphere. CONSTITUTION: A manufacturing method of a nickel-carbon nitride sphere comprises the following steps: producing a melamine-formaldehyde resin by mixing and stirring a formaldehyde solution and melamine; forming a nickel-melamine resin by mixing nickel salt and a surfactant to the melamine-formaldehyde resin; spraying nitrogen gas to the nickel-melamine resin mixture to make the resin into a sphere, and solidifying the spherical nickel-melamine resin mixture using a furnace to make a solid particle containing nickel; and washing the solid particle with an ethanol solution and vacuums drying to make the nickel-carbon nitride sphere.

    Abstract translation: 目的:提供一种镍 - 碳氮化物球及其制造的镍 - 碳氮球的制造方法,以控制镍 - 碳氮化物球的形状。 构成:镍 - 碳氮化物球的制造方法包括以下步骤:通过混合和搅拌甲醛溶液和三聚氰胺来生产三聚氰胺 - 甲醛树脂; 通过将镍盐和表面活性剂混合到三聚氰胺 - 甲醛树脂中形成镍 - 三聚氰胺树脂; 将氮气喷射到镍 - 三聚氰胺树脂混合物中以使树脂成球体,并使用炉固化球形镍 - 三聚氰胺树脂混合物以制备含镍的固体颗粒; 并用乙醇溶液洗涤固体颗粒并真空干燥以制备镍 - 碳氮化物球体。

    리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를포함하는 리튬 이차 전지
    53.
    发明公开
    리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를포함하는 리튬 이차 전지 有权
    用于可充电锂电池的负极活性材料,其制备方法和包含其的可充电锂电池

    公开(公告)号:KR1020090078591A

    公开(公告)日:2009-07-20

    申请号:KR1020080004495

    申请日:2008-01-15

    Abstract: An anode active material for a lithium secondary battery, its manufacturing method, and a lithium secondary battery containing the anode active material are provided to prevent the shortage due to the volume expansion of a metal-based active material, thereby improving lifetime characteristics. An anode active material for a lithium secondary battery comprises an alloy which comprises an active metal and an inactive metal; and a carbon-based material which is combined with the active metal of the alloy by the active metal-carbon bond. Preferably the active metal is at least one selected from the group consisting of Si, Sn, Al, Zn, Pb, Bi, Ag, Cd and Sb.

    Abstract translation: 提供锂二次电池用负极活性物质及其制造方法以及含有负极活性物质的锂二次电池,以防止由于金属类活性物质的体积膨胀而导致的短缺,从而提高寿命特性。 用于锂二次电池的负极活性材料包括含有活性金属和非活性金属的合金; 以及通过活性金属 - 碳键与合金的活性金属组合的碳基材料。 优选活性金属为选自Si,Sn,Al,Zn,Pb,Bi,Ag,Cd和Sb中的至少一种。

    금속 양이온이 도핑된 수소저장용 유기물질 골격구조 물질유도체 및 그의 사용방법
    54.
    发明授权
    금속 양이온이 도핑된 수소저장용 유기물질 골격구조 물질유도체 및 그의 사용방법 有权
    用于氢储存的金属喷涂有机框架衍生物及其使用方法

    公开(公告)号:KR100832309B1

    公开(公告)日:2008-05-26

    申请号:KR1020070118906

    申请日:2007-11-21

    Abstract: A new hydrogen storage material that absorbs and releases a large amount of hydrogen at a room temperature condition by doping light metal cations on covalent organic frameworks is provided, a method of storing hydrogen by using the new hydrogen storage material is provided. A covalent organic framework derivative for hydrogen storage is characterized in that: the covalent organic framework derivative has a crystal structure consisting of a covalent bond of an organic molecule with a metal cation-doped triangular structure and an organic molecule with a rectangular tetrahedral structure; a ring in the center of the triangular structure is a B3O3 ring in which three boron(B) atoms and three oxygen(O) atoms are bonded in the form of a regular hexagonal ring, or a C2O2B ring in which two carbon(C) atoms and one boron(B) atom are bonded in the form of a pentagonal ring; the B3O3 ring or the C2O2B ring is formed in such a way that two of three covalent bonds coming from the boron(B) is covalently bonded to oxygen to form the center of the triangular structure, remaining one of the covalent bonds is bonded to an organic molecule consisting of a phenyl group to form a triangular structure with three apexes, each of the apexes of the triangular structure having at least one phenyl group; and a central atom of the rectangular tetrahedral structure is carbon(C) or silicon(Si), and four bonds of the central atom of the rectangular tetrahedral structure are covalently bonded to the organic molecule consisting of phenyl groups that form the apexes of the triangular structure.

    Abstract translation: 提供了一种通过在共价有机骨架上掺杂轻金属阳离子在室温条件下吸收和释放大量氢的新的储氢材料,提供了一种通过使用新的储氢材料储存氢的方法。 用于储氢的共价有机骨架衍生物的特征在于:共价有机骨架衍生物具有由有机分子与金属阳离子掺杂三角结构的共价键和具有矩形四面体结构的有机分子组成的晶体结构; 三角形结构的中心环是B3O3环,其中三个硼(B)原子和三个氧(O)原子以正六方环结合,或C2O2B环,其中两个碳(C) 原子和一个硼(B)原子以五边形环的形式键合; 形成B3O3环或C2O2B环,使得来自硼(B)的三个共价键中的两个共价键与氧共价键形成三角结构的中心,其中一个共价键键合到 由苯基组成的有机分子形成具有三个顶点的三角形结构,三角形结构的每个顶点具有至少一个苯基; 并且矩形四面体结构的中心原子是碳(C)或硅(Si),矩形四面体结构的中心原子的四个键共价结合到由形成三角形顶点的苯基组成的有机分子 结构体。

    나노크기의 금속분화 촉매 및 그의 제조방법
    55.
    发明授权
    나노크기의 금속분화 촉매 및 그의 제조방법 有权
    金属纳米粒子纳米复合材料及其制备方法

    公开(公告)号:KR100831069B1

    公开(公告)日:2008-05-22

    申请号:KR1020070102100

    申请日:2007-10-10

    Abstract: A nano-sized metal crater catalyst having a crater-shaped hole structure formed in the center thereof is provided to obtain characteristics and structure of the nano material, a method for preparing the nano-sized metal crater catalyst is provided to simplify the process and treat a large quantity of metal nanoparticles at a low cost, and a nano material controlled to a desired structure by preparing the nano material using the metal crater catalyst is provided. A nano-sized metal crater catalyst is characterized in that vacancy and dislocation are formed in one or two metal nanoparticle(s) selected from the group consisting of iron(Fe) and cobalt(Co), and a crater-shaped hole with a diameter of 1 to 20 nm is formed in the center of the metal nanoparticle(s) having a height of 3 to 16 nm. A method for preparing a nano-sized metal crater catalyst comprises the steps of: (a) performing plasma pre-treatment of a film of metal nanoparticles deposited onto a substrate at a plasma power of 500 to 800 W and a temperature of 600 to 1000 deg.C in a nitrogen gas atmosphere with a nitrogen gas flow rate of 80 to 120 sccm to form vacancy and dislocation in the metal nanoparticles; and (b) performing chemical etching of the plasma pre-treated metal nanoparticle film for 2 to 4 hours by using a mixed solution comprising ethanol as a solvent and 10 to 30 %(v/v) of nitric acid containing 1 to 10 wt.% of iodine(I) relative to the ethanol to form a hole in the center of the metal nanoparticles. The metal is at least one selected from metal elements of Groups 3 to 14. The metal is one or two selected from the group consisting of iron(Fe) and cobalt(Co).

    Abstract translation: 为了获得纳米材料的特性和结构,提供了一种具有形成在其中心的凹坑形孔结构的纳米级金属火山口催化剂,提供了一种制备纳米尺寸金属火山口催化剂的方法,以简化工艺和处理 提供了低成本的大量金属纳米粒子,以及通过使用金属火山口催化剂制备纳米材料而将其控制到所需结构的纳米材料。 纳米尺寸金属火山口催化剂的特征在于,在选自铁(Fe)和钴(Co)的一种或两种金属纳米颗粒中形成空位和位错,并且具有直径 在高度为3〜16nm的金属纳米粒子的中心形成1〜20nm。 制备纳米尺寸金属火山口催化剂的方法包括以下步骤:(a)以500至800W的等离子体功率和600至1000的温度进行沉积在基板上的金属纳米颗粒膜的等离子体预处理 在氮气气氛中,氮气流速为80〜120sccm,在金属纳米粒子中形成空位和位错; 和(b)通过使用包含乙醇作为溶剂的混合溶液和10至30%(v / v)含有1-10重量%的(V / V)的硝酸进行等离子体预处理的金属纳米颗粒膜的化学蚀刻2至4小时。 相对于乙醇的碘(I)的百分比在金属纳米粒子的中心形成一个孔。 金属是选自第3〜14族的金属元素中的至少一种。金属是选自铁(Fe)和钴(Co)中的一种或两种。

    상압 플라스마를 이용한 수소저장용 카본나노튜브의 구조변화 방법
    57.
    发明公开
    상압 플라스마를 이용한 수소저장용 카본나노튜브의 구조변화 방법 失效
    用于大气压力等离子体改性的碳纳米管储氢的结构方法

    公开(公告)号:KR1020060112519A

    公开(公告)日:2006-11-01

    申请号:KR1020050035061

    申请日:2005-04-27

    Abstract: Provided is a method for modifying a structure of carbon nanotube for hydrogen storage by using atmospheric pressure plasma, wherein carbon nanotube useful for material for hydrogen storage is etched with atmospheric pressure plasma so as to increase a capacity for hydrogen storage. The method for modifying a structure of carbon nanotube for hydrogen storage by using atmospheric pressure comprises etching a carbon nanotube to be used as material for hydrogen storage with atmospheric plasma so as to increase a capacity for hydrogen storage. Helium and argon which are reaction gases, and 2-10%(based on air) of oxygen as etching gas are added, in order to increase an etching effect with the atmospheric plasma. A carbon nanotube manufactured by the method has open ends, flawed wall, and numerous nano-sized pores.

    Abstract translation: 提供了通过使用大气压等离子体来改性用于氢存储的碳纳米管的结构的方法,其中用于储氢材料的碳纳米管用大气压等离子体进行蚀刻,以增加储氢能力。 通过使用大气压来改变用于氢存储的碳纳米管的结构的方法包括蚀刻作为用于与大气等离子体进行氢存储的材料的碳纳米管,以增加储氢能力。 加入作为反应气体的氦气和氩气,以及作为蚀刻气体的2-10%(基于空气)的氧),以增加与大气等离子体的蚀刻效果。 通过该方法制造的碳纳米管具有开口端,有缺陷的壁和许多纳米尺寸的孔。

    리튬을 이용한 금속 산화물이 재배열된 나노 결정의 에너지 저장 장치 및 이를 이용한 슈퍼커패시터

    公开(公告)号:KR102255622B1

    公开(公告)日:2021-05-25

    申请号:KR1020140181261

    申请日:2014-12-16

    Abstract: 본발명은리튬을이용한금속산화물이재배열된나노결정및 에너지저장장치및 이를이용한슈퍼커패시터(Supercapacitor)에관한것이다. 보다상세하게는전이금속나노입자를비표면적이넓은탄소계열의지지체에분산한다음, 환원력이강한리튬이온을이용하여지지체위에서분산및 재배열시킴으로서, 재배열된금속입자는 1나노크기미만의원자단위의입자로지지체위에분산및 재배치되는것을특징으로하는에너지저장장치이다. 또한이를이용한슈퍼커패시터에관한것이다. 본발명의재배열된금속입자의에너지저장장치는금속산화물재배열전 보다수 배높은정전용량을나타내었다. 또한재배열된금속입자는 1나노미만의원자단위크기의입자이기때문에입자간간섭이사라져서 100,000 사이클이상에서도성능이 100% 유지되는넘는수명특성을나타낸다.

    다공성 그래핀과 금속산화물 나노입자의 층상 구조체를 이용한 초고출력, 초장수명 리튬이차전지 음극재료 및 그 제조방법
    60.
    发明授权
    다공성 그래핀과 금속산화물 나노입자의 층상 구조체를 이용한 초고출력, 초장수명 리튬이차전지 음극재료 및 그 제조방법 有权
    超高功率,超长寿命锂二次电池负极材料采用石墨烯和金属氧化物纳米粒子的多孔层结构及其制造方法

    公开(公告)号:KR101745449B1

    公开(公告)日:2017-06-12

    申请号:KR1020150118146

    申请日:2015-08-21

    Abstract: 본발명은다공성그래핀과금속산화물나노입자의층상구조체를이용한매우빠른충전·방전특성및 긴수명특성을나타내는리튬이차전지음극재료로서, 다공성그래핀의매크로기공과금속산화물나노입자의짧은확산거리가리튬이온의빠른이동과확산을가능하게한다. 낮은시트저항 (약 4.53 Ω·sq)의전기전도성이우수한다공성그래핀이도전제와접착제없이집전체와직접적으로연결되어전자의이동경로가형성되고, 열린통로를갖는금속산화물나노결정들이그래핀그물망 구조체표면에서빠른이온전달경로역할을하는것을알고최초로발표하게되었다. 본발명은매우빠른속도의충전/방전거동과함께 30,000 mA·g의전류밀도조건에서도 10,000번이상의전례없는수명시간성능을나타낸다. 따라서다공성그래핀그물망 구조체의음극나노구조체들과조합시켜높은용량을보유하면서매우빠른충전/방전속도특성과안정한수명시간특성을구현하는구조로서다양한응용분야에폭넓은적용이가능하다.

    Abstract translation: 本发明多孔是非常快速充电,并通过使用所述销的层状结构,所述金属氧化物纳米颗粒和书面极材料表现出寿命长的特点,大孔的多孔是短的扩散和销的金属氧化物纳米颗粒的锂二次电池的放电特性 该距离使得锂离子能够快速迁移和扩散。 较低的表面电阻(约4.53Ω·平方)石墨烯的高导电性的孔隙率也被连接到该处并没有集电极粘合剂,并直接在电子移动路径形成的,具有开放的通道,以石墨烯的金属氧化物纳米晶体 它是第一个知道它在网状结构表面上作为快速离子转运通路的。 即使在30,000mA·g的电流密度下,本发明也表现出前所未有的10,000以上的寿命性能,并具有非常快速的充电/放电行为。 因此多孔因此,有可能施加一个大的宽度在各种应用中作为用于实现一个非常快的销净充电/放电速率特性和寿命特性稳定的结构,同时与负电极的纳米结构组合有所述结构的高容量。

Patent Agency Ranking