Abstract:
A wireless communication system having a Node B and a plurality of wireless transmit/receive units (WTRUs), includes a contention-based uplink (UL) channel and at least one downlink (DL) physical channel. The UL channel is randomly accessed by a WTRU when the WTRU is ready to transmit data. The DL physical channel supports DL transmissions from the Node B to the WTRUs. The DL transmissions include an acquisition indicator and information regarding said acquisition indicator. The acquisition indicator confirms whether the data transmitted over said UL channel was successfully received by the Node B.
Abstract:
A drifting wireless transmit/receive unit (WTRU) has an associated drift radio network controller (D-RNC) and an associated servicing radio network controller (S-RNC). The D-RNC sends a request message to the S-RNC requesting measurements of the drifting WTRU. The S-RNC receives the request message and sends an information message with the requested measurements to the D-RNC. The D-RNC receives the information message.
Abstract:
A system and method for improved cell searching includes a subframe (Fig. 2) having a Primary Synchronization Code (22), which is comment to all Node Bs in the system and is used to indicate the positions of a set of Secondary Synchronization Codes. This greatly simplifies the cell searching procedure and improves cell search performance. In one embodiment, the Primary Synchronization Code (22) is sent in the PCCPCH (12) and the Secondary Synchronization Codes the are sent in the DwPTS (14) timeslot.
Abstract:
A method and system for conserving power of battery-powered mesh points (MPs) in a mesh network are disclosed. In one embodiment, a centralized controller is provided in the mesh network. Each of the MPs signal information associated with conserving MP battery power and provide indications of battery power levels associated with the respective MPs to the centralized controller. The centralized controller optimizes the configuration of the mesh network based on the signaling information for conserving MP battery power and the battery power level indications. In an alternate embodiment, each of the MPs individually monitor traffic flowing through the respective MP and a level of battery power associated with the respective MP. Each of the MPs determine whether to activate a power saving function associated with the respective MP and signal information associated with conserving MP battery power to neighboring MPs in the mesh network.
Abstract:
A method for communicating a list of handover candidates in a wireless local area network from a station to a serving access point (AP) begins by determining a list of handover candidate APs at the station. The candidate list is sorted at the station and is sent to the serving AP. The sending step can include sending the candidate list to the serving AP upon the expiration of a predetermined period of time or upon receipt at the station of an event trigger. The method can also include the step of requesting a candidate list from the station by the serving AP.
Abstract:
A method, access point (AP) and a wireless transmit/receive unit (WTRU) in wireless communications are disclosed. Means are provided for a first communication station providing a load element for each of a plurality of access categories, and advertising the plurality of load elements to other communication stations.
Abstract:
In UTRA-TDD and other systems, a method and system for providing improved acquisition performance of beacon channels. The present invention uses time-staggered beacon time slots to provide improved beacon-acquisition performance. The present invention is applicable to sectorized cells or anywhere with unfavorable deployment conditions which lead to unacceptable beacon acquisition performance with time-aligned beacon time slots.
Abstract:
A method for neighbor scanning in a wireless local area network having a station, a first access point, AP, to which the station is associated, and a second AP, comprising the steps of generating timing information regarding a beacon signal sent by the second AP, reporting the timing information from the first AP to the station and scheduling at the station a time, based on the timing information, to listen for the beacon signal transmitted by the second AP. The timing information includes an indication of a time difference between a second beacon signal sent by the access point and the first beacon signal sent by the second AP and the time difference is an offset in timing units.