Abstract:
An integrated circuit includes transistors respectively including channel layers in a substrate, source electrodes and drain electrodes respectively contacting both sides of the channel layers, gate electrodes on the channel layers, and ferroelectrics layers between the channel layers and the gate electrodes. Electrical characteristics of the ferroelectrics layers of at least two of the transistors are different. Accordingly, threshold voltages of the transistors are different from each other.
Abstract:
Provided is a ferroelectric semiconductor device including a ferroelectric layer and two or more electrode layers. The semiconductor device may include a first electrode layer and a second electrode layer which have thermal expansion coefficients less than the thermal expansion coefficient of the ferroelectric layer. The difference between the thermal expansion coefficients of the second electrode layer and the ferroelectric layer may be greater than the difference between the thermal expansion coefficients of the first electrode layer and the ferroelectric. The second electrode layer may have a thickness greater than the thickness of the first electrode layer.
Abstract:
Disclosed are a thin film structure and an electronic device including the same. The disclosed thin film structure includes a dielectric material layer between a first material layer and a second material layer. The dielectric material layer includes a dopant in a matrix material having a fluorite structure. The dielectric material layer is uniformly doped with a low concentration of the dopant, and has ferroelectricity.
Abstract:
Provided are a logic switching device and a method of manufacturing the same. The logic switching device may include a domain switching layer adjacent to a gate electrode. The domain switching layer may include a ferroelectric material region and an anti-ferroelectric material region. The domain switching layer may be a non-memory element. The logic switching device may include a channel, a source and a drain both connected to the channel, the gate electrode arranged to face the channel, and the domain switching layer provided between the channel and the gate electrode.
Abstract:
Provided are an electronic device and a method of manufacturing the same. The electronic device may include a first device provided on a first region of a substrate; and a second device provided on a second region of the substrate, wherein the first device may include a first domain layer including a ferroelectric domain and a first gate electrode on the first domain layer, and the second device may include a second domain layer including a ferroelectric domain and a second gate electrode on the second domain layer. The first domain layer and the second domain layer may have different characteristics from each other at a polarization change according to an electric field. At the polarization change according to the electric field, the first domain layer may have substantially a non-hysteretic behavior characteristic and the second domain layer may have a hysteretic behavior characteristic.
Abstract:
Methods of forming a graphene nanopattern, graphene-containing devices, and methods of manufacturing the graphene-containing devices are provided. A method of forming the graphene nanopattern may include forming a graphene layer on a substrate, forming a block copolymer layer on the graphene layer and a region of the substrate exposed on at least one side of the graphene layer, forming a mask pattern from the block copolymer layer by removing one of a plurality of first region and a plurality of second regions of the block copolymer, and patterning the graphene layer in a nanoscale by using the mask pattern as an etching mask. The block copolymer layer may be formed to directly contact the graphene layer. The block copolymer layer may be formed to directly contact a region of the substrate structure that is exposed on at least one side of the graphene layer.