Abstract:
An embedded resistor including a first interdielectric layer, a cap layer, a resistive layer and a cap film is provided. The first interdielectric layer is located on a substrate. The cap layer is located on the first interdielectric layer, wherein the cap layer has a trench. The resistive layer conformally covers the trench, thereby having a U-shaped cross-sectional profile. The cap film is located in the trench and on the resistive layer, or, an embedded thin film resistor including a first interdielectric layer, a cap layer and a bulk resistive layer is provided. The first interdielectric layer is located on a substrate. The cap layer is located on the first interdielectric layer, wherein the cap layer has a trench. The bulk resistive layer is located in the trench.
Abstract:
The present invention provides a manufacturing method of a semiconductor structure, comprising the following steps. First, a substrate is provided, a first dielectric layer is formed on the substrate, a metal gate is disposed in the first dielectric layer and at least one source/drain region (S/D region) is disposed on two sides of the metal gate, a second dielectric layer is then formed on the first dielectric layer, a first etching process is then performed to form a plurality of first trenches in the first dielectric layer and the second dielectric layer, wherein the first trenches expose each S/D region. Afterwards, a salicide process is performed to form a salicide layer in each first trench, a second etching process is then performed to form a plurality of second trenches in the first dielectric layer and the second dielectric layer, and the second trenches expose the metal gate.
Abstract:
A method for fabricating a semiconductor device is provided according to one embodiment of the present invention and includes forming an interlayer dielectric on a substrate; forming a trench surrounded by the interlayer dielectric; depositing a dielectric layer and a work function layer on a surface of the trench sequentially and conformally; filling up the trench with a conductive layer; removing an upper portion of the conductive layer inside the trench; forming a protection film on a top surface of the interlayer dielectric and a top surface of the conductive layer through a directional deposition process; removing the dielectric layer exposed from the protection film; and forming a hard mask to cover the protection film.
Abstract:
The present invention provides a semiconductor structure including at least a contact plug. The structure includes a substrate, a transistor, a first ILD layer, a second ILD layer and a first contact plug. The transistor is disposed on the substrate and includes a gate and a source/drain region. The first ILD layer is disposed on the transistor and levels with a top surface of the gate. The second ILD layer is disposed on the first ILD layer. The first contact plug is disposed in the first ILD layer and the second ILD layer and includes a first trench portion and a first via portion, wherein a boundary of the first trench portion and a first via portion is higher than the top surface of the gate. The present invention further provides a method of making the same.
Abstract:
A method for fabricating a semiconductor device is provided according to one embodiment of the present invention and includes forming an interlayer dielectric on a substrate; forming a trench surrounded by the interlayer dielectric; depositing a dielectric layer and a work function layer on a surface of the trench sequentially and conformally; filling up the trench with a conductive layer; removing an upper portion of the conductive layer inside the trench; forming a protection film on a top surface of the interlayer dielectric and a top surface of the conductive layer through a directional deposition process; removing the dielectric layer exposed from the protection film; and forming a hard mask to cover the protection film.
Abstract:
A method for fabricating a semiconductor device is provided herein and includes the following steps. First, a first interlayer dielectric is formed on a substrate. Then, a gate electrode is formed on the substrate, wherein a periphery of the gate electrode is surrounded by the first interlayer dielectric. Afterwards, a patterned mask layer is formed on the gate electrode, wherein a bottom surface of the patterned mask layer is leveled with a top surface of the first interlayer dielectric. A second interlayer dielectric is then formed to cover a top surface and each side surface of the patterned mask layer. Finally, a self-aligned contact structure is formed in the first interlayer dielectric and the second interlayer dielectric.
Abstract:
A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate having an interlayer dielectric (ILD) layer thereon, wherein at least one metal gate is formed in the ILD layer and at least one source/drain region is adjacent to two sides of the metal gate; forming a first dielectric layer on the ILD layer; forming a second dielectric layer on the first dielectric layer; performing a first etching process to partially remove the second dielectric layer; utilizing a first cleaning agent for performing a first wet clean process; performing a second etching process to partially remove the first dielectric layer; and utilizing a second cleaning agent for performing a second wet clean process, wherein the first cleaning agent is different from the second cleaning agent.
Abstract:
The present invention provides a manufacturing method of a semiconductor structure, comprising the following steps. First, a substrate is provided, a first dielectric layer is formed on the substrate, a metal gate is disposed in the first dielectric layer and at least one source/drain region (S/D region) is disposed on two sides of the metal gate, a second dielectric layer is then formed on the first dielectric layer, a first etching process is then performed to form a plurality of first trenches in the first dielectric layer and the second dielectric layer, wherein the first trenches expose each S/D region. Afterwards, a salicide process is performed to form a salicide layer in each first trench, a second etching process is then performed to form a plurality of second trenches in the first dielectric layer and the second dielectric layer, and the second trenches expose the metal gate.
Abstract:
A semiconductor structure includes a metal gate, a second dielectric layer and a contact plug. The metal gate is located on a substrate and in a first dielectric layer, wherein the metal gate includes a work function metal layer having a U-shaped cross- sectional profile and a low resistivity material located on the work function metal layer. The second dielectric layer is located on the metal gate and the first dielectric layer. The contact plug is located on the second dielectric layer and in a third dielectric layer, thereby a capacitor is formed. Moreover, the present invention also provides a semiconductor process forming said semiconductor structure.
Abstract:
A method for fabricating semiconductor device includes the steps of: providing a substrate having at least a gate structure thereon and an interlayer dielectric (ILD) layer surrounding the gate structure, wherein the gate structure comprises a hard mask thereon; forming a dielectric layer on the gate structure and the ILD layer; removing part of the dielectric layer to expose the hard mask and the ILD layer; and performing a surface treatment to form a doped region in the hard mask and the ILD layer.