Abstract:
Disclosed herein an inertial sensor and a method of manufacturing the same. An inertial sensor 100 according to a preferred embodiment of the present invention is configured to include a plate-shaped membrane 110, a mass body 120 that includes an adhesive part 123 disposed under a central portion 113 of the membrane 110 and provided at the central portion thereof and a patterning part 125 provided at an outer side of the adhesive part 123 and patterned to vertically penetrate therethrough, and a first adhesive layer 130 that is formed between the membrane 110 and the adhesive part 123 and is provided at an inner side of the patterning part 125. An area of the first adhesive layer 130 is narrow by isotropic etching using the patterning part 125 as a mask, thereby making it possible to improve sensitivity of the inertial sensor 100.
Abstract:
A method for producing a device including plural cavities defined between a substrate in at least one given semiconductor material and a membrane resting on a top of insulating posts projecting from the substrate, the method allowing a height of the cavity or cavities to be adapted independently of a height of the insulating posts and allowing cavities of different heights to be formed.
Abstract:
A method for producing a device including plural cavities defined between a substrate in at least one given semiconductor material and a membrane resting on a top of insulating posts projecting from the substrate, the method allowing a height of the cavity or cavities to be adapted independently of a height of the insulating posts and allowing cavities of different heights to be formed.
Abstract:
A master tool is provided with an ink pattern on a major surface thereof. The ink pattern is formed by a screen printing process. A stamp-making material is applied to the major surface of the master tool to form a stamp having a stamping pattern being negative to the ink pattern of the master tool. The stamping pattern is inked with an ink composition and contacted with a metalized surface to form a printed pattern on a metalized surface of a substrate according to the stamping pattern. Using the printed pattern as an etching mask, the metalized surface is etched to form electrically conductive traces on the substrate.
Abstract:
L'invention concerne un procédé amélioré de réalisation d'un dispositif comprenant plusieurs cavités (150a,150b) définies entre un substrat (100) à base d'au moins un matériau semi-conducteur donné et une membrane (140) reposant sur le sommet de plots isolants (104a, 104b, 104c) dépassant du substrat, le procédé permettant d'adapter la hauteur de la ou des cavités indépendamment de celle des plots isolants et de réaliser des cavités de hauteurs différentes.
Abstract:
The invention relates to an improved process for producing a device comprising a plurality of cavities (150a, 150b) defined between a substrate (100) based on at least one given semiconductor material and a membrane (140) resting on the tops of insulating pads (104a, 104b, 104c) that protrude from the substrate, the process allowing the height of the one or more cavities to be adjusted independently of that of the insulating pads and cavities of different heights to be produced.
Abstract:
A master tool is provided with an ink pattern on a major surface thereof. The ink pattern is formed by a screen printing process. A stamp-making material is applied to the major surface of the master tool to form a stamp having a stamping pattern being negative to the ink pattern of the master tool. The stamping pattern is inked with an ink composition and contacted with a metalized surface to form a printed pattern on a metalized surface of a substrate according to the stamping pattern. Using the printed pattern as an etching mask, the metalized surface is etched to form electrically conductive traces on the substrate.
Abstract:
A master tool is provided with an ink pattern on a major surface thereof. The ink pattern is formed by a screen printing process. A stamp-making material is applied to the major surface of the master tool to form a stamp having a stamping pattern being negative to the ink pattern of the master tool. The stamping pattern is inked with an ink composition and contacted with a metalized surface to form a printed pattern on a metalized surface of a substrate according to the stamping pattern. Using the printed pattern as an etching mask, the metalized surface is etched to form electrically conductive traces on the substrate.