Abstract:
In a thin film device including a thin film electrode which has a main electrode layer formed of tungsten, a thin film electrode having a low resistivity is realized. There is provided a thin film device (1) including a thin film electrode (7) which has an underlayer (7A) and a main electrode layer (7B) formed on the underlayer (7A), the underlayer (7A) is formed of a titanium-tungsten alloy having a crystalline structure with a wavy-like surface morphology, and the main electrode layer (7B) is formed of tungsten having a crystalline structure with a wavy-like surface morphology.
Abstract:
A crystalline thin film structure formed by the deposition of a predominant first crystalline material in two or more layers interleaved by layers of a second crystalline material having a lattice constant that differs from the lattice constant of the predominant first crystalline material in order to disrupt the growth of columnar crystals in the predominant first crystalline material in order to reduce the differential stress profile through the thickness of the film structure relative to the differential stress profile of a crystalline thin film structure formed solely from the predominant first crystalline material.
Abstract:
Ein Bauelement für integrierte Sensoren, insbesondere für IR-Sensoren, hat ein Substrat (1), in dem eine Schaltung bzw. Bauelemente der Ausleseelektronik integriert ist/sind. Auf dem Substrat (1) ist eine Hilfsschicht angeordnet, die mit ein oder mehreren abgeschlossenen oder evakuierten Hohlräumen (3a) versehen ist. Eine Membran (4) schließt die Hohlräume (3a) nach oben hin ab, so dass ein Sensorelement vertikal in Bezug auf die Ausleseelektronik angeordnet werden kann. In Stützstrukturen (5) aus Si-Oxid befinden sich Metallisierungen (7), die sich senkrecht durch den Hohlraum (3a) erstrecken, um die vertikal angeordneten Sensorelemente und Ausleseschaltungen elektrisch zu verbinden.
Abstract:
A method of forming a thin film metallization layer having a predetermined residual stress and a predetermined sheet resistance and force measuring devices formed using the methods.
Abstract:
An X-ray mask can be manufactured by forming an X-ray transmitting thin film (12) on a mask support (11), forming an X-ray absorber thin film (14) on the X-ray transmitting thin film (12), and patterning the X-ray absorber thin film (14) with a desired pattern to form an X-ray absorber pattern. Prior to the patterning, at least one inert element with an atomic number greater than that of neon is ion-implanted in the X-ray absorber thin film (14).
Abstract:
A micromechanical device has a functional layer. One or more layers are provided between the functional layer and the micromechanical device to provide stress relief.
Abstract:
A micromechanical device has a functional layer. One or more layers are provided between the functional layer and the micromechanical device to provide stress relief.