Abstract:
A system for performing spectroscopy, including a first frequency comb source outputting first electromagnetic radiation comprising a first frequency comb centered at a first wavelength and having a first repetition rate; a second frequency comb source outputting a second electromagnetic radiation comprising a second frequency comb centered at a second wavelength and having a second repetition rate; a nonlinear device positioned to receive the first frequency comb and the second frequency comb, wherein the nonlinear device interacts the first frequency comb and the second frequency comb through sum frequency generation or difference frequency generation so as to generate an output electromagnetic radiation; and a detection system outputting a signal in response to detecting an interference of the output electromagnetic radiation with a third electromagnetic radiation, the signal comprising information used for determining a spectrum of at least the first frequency comb or the second frequency comb.
Abstract:
A modular device includes base and color sensing portions. The color sensing portion has a face, a controlled light source offset from the face to define an interior, the face configured to engage a target surface about a perimeter of the device housing wherein ambient light is restricted from entering the interior. A color sensor receives light reflected from the target surface and generates output signals representative of a surface color. The base portion communicates with the color sensor and a user device having a hosted program which generates a user interface enabling users to provide control input for the color sensor. The program further receives the output signals from the color sensing device and displays a first image of the detected color, and displays a second image of a user-selected color beside the first image. Color data values are further displayed corresponding to the difference between displayed colors.
Abstract:
A system and method for non-destructive, in situ, positive material identification of a pipe selects three test areas that are separated axially and circumferentially from one another and then polishes a portion of each test area. Within each polished area, a non-destructive test device is used to collect mechanical property data and another non-destructive test device is used to collect chemical property data. An overall mean for the mechanical property data, and for the chemical property data, is calculated using at least two data collection runs. The means are compared to a known material standard to determine, at a high level of confidence, ultimate yield strength and ultimate tensile strength within +/−10%, a carbon percentage within +/−25%, and a manganese percentage within +/−20% of a known material standard.
Abstract:
The present invention relates to an apparatus for detecting photons according to an atmospheric condition, using a function of adjusting light quantity that can significantly improve reliability of an atmospheric condition analysis result by minimizing noise in a spectrum by maintaining the quantity of incident light uniform within a predetermined range regardless of atmospheric conditions and changes, and to a method of adjusting light quantity. The apparatus for detecting photons in accordance with atmospheric conditions using a function of adjusting light quantity includes: an apparatus case having a light inlet; a light quantity adjuster disposed under the light inlet and adjusting quantity of incident light such that a predetermined quantity of light travels inside; and a controller controlling operation of the light quantity adjuster in accordance with intensity of light detected by the light quantity adjuster.
Abstract:
A hand held spectrometer is used to illuminate the object and measure the one or more spectra. The spectral data of the object can be used to determine one or more attributes of the object. In many embodiments, the spectrometer is coupled to a database of spectral information that can be used to determine the attributes of the object. The spectrometer system may comprise a hand held communication device coupled to a spectrometer, in which the user can input and receive data related to the measured object with the hand held communication device. The embodiments disclosed herein allow many users to share object data with many people, in order to provide many people with actionable intelligence in response to spectral data.
Abstract:
A hand held spectrometer is used to illuminate the object and measure the one or more spectra. The spectral data of the object can be used to determine one or more attributes of the object. In many embodiments, the spectrometer is coupled to a database of spectral information that can be used to determine the attributes of the object. The spectrometer system may comprise a hand held communication device coupled to a spectrometer, in which the user can input and receive data related to the measured object with the hand held communication device. The embodiments disclosed herein allow many users to share object data with many people, in order to provide many people with actionable intelligence in response to spectral data.
Abstract:
Disclosed are a method for obtaining a full reflectance spectrum of a surface and an apparatus therefor. The method for obtaining a full reflectance spectrum of a surface, comprises the steps of: (a) calculating a combination value of spectral characteristics of a light source and response characteristics of a camera for an image of a reference object, the full reflectance spectrum of a surface of which is known, by utilizing the known full reflectance spectrum of a surface; (b) obtaining an image by photographing an object irradiated with light according to a predetermined lighting environment; and (c) obtaining a full reflectance spectrum of a surface for the object by utilizing the combination value of the spectral characteristics of the light source and the response characteristics of the camera for the image.
Abstract:
A method of measuring a terahertz wave includes the steps of: starting input of a pulse signal showing that scale marks have been detected, which are arranged at equal intervals along a moving direction of a movable stage which can move in a direction in which an optical path length of incident pulse light is contracted or extended; and taking signals outputted at pulse intervals of the pulse light from a terahertz wave detecting section by synchronizing the timing with the pulse signal.
Abstract:
An optical assembly is disclosed that includes an illumination source, a detection sensor, a monitor sensor, and an optical piece having a first side adapted to face a sample. The optical piece defines an illumination channel extending from the illumination source toward the first side, a detection channel extending from the first side toward the detection sensor, and a monitor channel extending from the illumination channel toward the monitor sensor. A spectrophotometer is also disclosed that includes a circuit board, illumination source and one or more sensors. The circuit board includes an optically transparent region, wherein the illumination source is mounted and situated relative to a first surface of the circuit board, so as to direct light through the optically transparent region. Each sensor is mounted and situated relative to a second surface of the circuit board opposite the first surface.
Abstract:
A method for determining spectral characteristics of an object is disclosed. A probe is positioned in proximity relative to the object and provides light to a surface of the object and receives light from the object. One or more critical heights are defined below which no specularly refelcted light is received and propagated. Prior to positioning the probe in proximity relative to the object, a plurality of position-sensitive calibration/normalization reference and a plurality of calibration/normalization measurements are taken with the probe at a plurality of predetermined positions with respect to the calibration/normalization reference. The intensity of light received is determined in a plurality of spectral bands with one or more measurements. The spectral characteristics of the object are determined based on the one or more measurements and based on data taken from one or more of the calibration/normalization measurements.