Abstract:
An optical metrology device is capable of detection of any combination of photoluminescence light, specular reflection of broadband light, and scattered light from a line across the width of a sample. The metrology device includes a first light source that produces a first illumination line on the sample. A scanning system may be used to scan an illumination spot across the sample to form the illumination line. A detector spectrally images the photoluminescence light emitted along the illumination line. Additionally, a broadband illumination source may be used to produce a second illumination line on the sample, where the detector spectrally images specular reflection of the broadband illumination along the second illumination line. The detector may also image scattered light from the first illumination line. The illumination lines may be scanned across the sample so that all positions on the sample may be measured.
Abstract:
An optical system for detecting light from a 2D area of a sample (36) comprises a collection lens (34) for collecting light from a collection region of the sample. A light detector (44) is positionally fixed with respect to the sample, and a reflector arrangement (61) directs collected light to the detector. The reflector arrangement comprises movable components and the collection lens (34) is movable relative to the sample. The collection lens and the movable components are configurable to define different collection regions, and the movement of the components effects a direction of the light from the collection region to a substantially unchanged area of the light detector (44). This arrangement avoids the need for a bulky detector in order to detect signals from a 2D sample area formed by scanning across the sample. This enables a more compact, cheaper and simpler solution.
Abstract:
A side surface inspection device is provided for a cylindrical battery having a side surface defining a first region and a second region as a remainder of the side surface. The device includes a first light to emit light to the side surface of the cylindrical battery; a first mirror and a second mirror on respective sides of the cylindrical battery to each reflect light from respective portions of the first region of the cylindrical battery; and a camera to capture a first image from the light reflected by the first mirror, and to capture a second image from the light reflected by the second mirror. The first region of the cylindrical battery is more than half of the side surface of the cylindrical battery. The first and second images corresponds to a full region of the first region of the cylindrical battery.
Abstract:
A detecting unit 4 receives light reflected from the object 2. A detecting unit 4 has a plurality of light guiding members 404 and 405 adjacently arranged so that longitudinal surfaces thereof are arranged along a longitudinal direction of the object 2, and photo sensors 410 and 411 which receive rays that are incident from the longitudinal surfaces constituting a light incident surface of each of the light guiding members and are emitted from light emitting surfaces of the light guiding members. An image forming device 3 forms an image of the reflected light, on the vicinity of the light incident surface. The surface shape of the object 2 in a portion in which the reflected light has been reflected is measured according to an output distribution of each of the photo sensors 410 and 411 arranged to face the light emitting surfaces.
Abstract:
An optoelectronic sensor (10) for detecting objects in a monitored zone (20) is provided which has the following: a front screen (38); a light transmitter (12) for transmitting a light beam (16); a movable deflection unit (18) for the periodic sampling of the monitored zone (20) by the light beam (16); a light receiver (26) for generating a received signal from the light beam (22) remitted by the objects; at least one test light transmitter (42); at least one test light transmitter (42), at least one test light receiver (44) and at least one test light reflector (48) which span a test light path (46a-b) through the front screen (38); and an evaluation unit (32) which is configured to acquire pieces of information on the objects in the monitored zone (20) from the received signal and to recognize an impaired light permeability of the front screen (38) from a test light signal which the test light receiver (44) generates from test light which is transmitted from the test light transmitter (42) and which is reflected at the test light reflector (48). In this respect, the test light reflector (48) is arranged such that it moves along with the deflection unit (18).
Abstract:
An optical metrology device is capable of detection of any combination of photoluminescence light, specular reflection of broadband light, and scattered light from a line across the width of a sample. The metrology device includes a first light source that produces a first illumination line on the sample. A scanning system may be used to scan an illumination spot across the sample to form the illumination line. A detector spectrally images the photoluminescence light emitted along the illumination line. Additionally, a broadband illumination source may be used to produce a second illumination line on the sample, where the detector spectrally images specular reflection of the broadband illumination along the second illumination line. The detector may also image scattered light from the first illumination line. The illumination lines may be scanned across the sample so that all positions on the sample may be measured.
Abstract:
Provided are a multi-channel fluorescence detecting module and a nucleic acid analysis system including the multi-channel fluorescence detecting module. The nucleic acid analysis system includes: a plurality of loaders configured to accommodate a plurality of cartridges respectively, the cartridges comprising microfluidic devices; a transfer module including a linear actuator, the linear actuator including a movable unit configured to move linearly; and a fluorescence detecting module fixed to the movable unit, the fluorescence detecting module being configured to emit excitation light to the cartridges and detect fluorescence emitted from samples on the cartridges. The loaders are arranged in a row in a linearly moving direction of the movable unit.