Abstract:
According to the present invention, there is provided a low dielectric loss tangent resin composition containing a crosslinking component having a weight average molecular weight of not more than 1,000 and a plurality of styrene groups and represented by the formula null1null, 1 wherein R is a hydrocarbon skeleton which may have a substituent, R1 is hydrogen, methyl or ethyl, m is an integer of 1-4 and n is an integer of 2 or more, and further containing at least one member selected from a high polymer having a weight average molecular weight of not less than 5,000 and a filler, which resin composition can give a cured product having a good flexibility, high tensile strength and low dielectric constant and dielectric loss tangent.
Abstract:
Disclosed are multilayer electrical structures comprising a discrete, partially-cured, microsphere-filled resin layer, and a method for fabricating such multilayer electrical structures using a carrier member to support and introduce the microsphere-filled resin layer.
Abstract:
A circuit subassembly is disclosed comprising a conductive metal layer and a dielectric substrate layer having a dielectric constant of less than about 3.5 and a dissipation factor of less than about 0.006 at 10 GHz, wherein the composition of the dielectric substrate layer comprises about 5 to about 70 volume percent of borosilicate microspheres that have been treated with an alkaline solution.
Abstract:
The present invention provides an at least partially coated fiber strand comprising a plurality of fibers, the coating comprising an organic component and lamellar particles having a thermal conductivity of at least 1 Watt per meter K at a temperature of 300K. The present invention also provides an at least partially coated fiber strand comprising a plurality of fibers, the coating comprising an organic component and non-hydratable, lamellar particles. The present invention further provides an at least partially coated fiber strand comprising a plurality of fibers having a resin compatible coating composition on at least a portion of a surface of at least one of said fibers, the resin compatible coating composition comprising: (a) a plurality of discrete particles formed from materials selected from non-heat expandable organic materials, inorganic polymeric materials, non-heat expandable composite materials and mixtures thereof, the particles having an average particle size sufficient to allow strand wet out; (b) at least one lubricious material different from said plurality of discrete particles; and (c) at least one film-forming material. The present invention also provides an at least partially coated fiber strand comprising a plurality of glass fibers having a resin compatible coating composition on at least a portion of a surface of at least one of said glass fibers, the resin compatible coating composition comprising: (a) a plurality of lamellar, inorganic particles having a Mohs' hardness value which does not exceed the Mohs' hardness value of said glass fibers; and (b) at least one polymeric material. The present invention further provides an at least partially coated fiber strand comprising a plurality of glass fibers having a resin compatible coating composition on at least a portion of a surface of at least one of said glass fibers, the resin compatible coating composition comprising: (a) a plurality of hollow, non-heat expandable organic particles; and (b) at least one lubricious material different from the at least one hollow organic particle.
Abstract:
A bulk dielectric material comprises a solid composite material comprising a solid matrix material and a plurality of filler elements distributed within the matrix material. The bulk dielectric material has, at a frequency greater than 1 MHz, (i) a permittivity having a real part of magnitude greater than 10 and an imaginary part of magnitude less than 3, and (ii) an electrical breakdown strength greater than 5 kV/mm and has a minimum dimension greater than 2 mm.
Abstract:
The present invention provides an at least partially coated fiber strand comprising a plurality of glass fibers having a resin compatible coating composition on at least a portion of a surface of at least one of said glass fibers, the resin compatible coating composition comprising: (a) a plurality of lamellar, inorganic particles and (b) at least one polymeric material. The present invention further provides that the resin compatible coating composition comprises (a) a plurality of discrete particles formed from materials selected from non-heat expandable organic materials, inorganic polymeric materials, non-heat expandable composite materials and mixtures thereof, the particles having an average particle size sufficient to allow strand wet out; (b) at least one lubricious material different from said plurality of discrete particles; and (c) at least one film-forming material. The present invention further provides that the resin compatible coating composition comprises (a) a plurality of hollow, non-heat expandable organicparticles; and (b) at least one lubricious material different from the at least one hollow organic particle.
Abstract:
The present invention provides an at least partially coated fiber strand comprising a plurality of glass fibers having a resin compatible coating composition on at least a portion of a surface of at least one of said glass fibers, the resin compatible coating composition comprising: (a) a plurality of lamellar, inorganic particles having a Mohs' hardness value which does not exceed the Mohs' hardness value of said glass fibers; and (b) at least one polymeric material. The present invention further provides the use of a resin compatible coating composition comprising: (a) a plurality of discrete particles formed from materials selected from non-heat expandable organic materials, inorganic polymeric materials, non-heat expandable composite materials and mixtures thereof, the particles having an average particle size sufficient to allow strand wet out; (b) at least one lubricious material different from said plurality of discrete particles; and (c) at least one film-forming material. The resin compatible coating composition can also comprise: (a) a plurality of hollow, non-heat expandable organic particles; and (b) at least one lubricious material different from the at least one hollow organic particle.