Nanometer semiconductor devices having high-quality epitaxial layer

    公开(公告)号:US11107932B2

    公开(公告)日:2021-08-31

    申请号:US16586697

    申请日:2019-09-27

    Inventor: Huilong Zhu

    Abstract: There are provided a nanometer semiconductor device with a high-quality epitaxial layer and a method of manufacturing the same. According to an embodiment, the semiconductor device may include: a substrate; at least one nanowire spaced apart from the substrate; at least one semiconductor layer, each formed around a periphery of respective one of the at least one nanowire to at least partially surround the corresponding nanowire, wherein the semiconductor layer(s) formed around the respective nanowire(s) are separated from each other; an isolation layer formed on the substrate, exposing the at least one semiconductor layer; and a gate stack formed on the isolation layer and intersecting the at least one semiconductor layer, wherein the gate stack includes a gate dielectric layer at least partially surrounding a periphery of respective one of the at least one semiconductor layer and a gate conductor layer.

    Semiconductor device and manufacturing method thereof

    公开(公告)号:US11056580B2

    公开(公告)日:2021-07-06

    申请号:US15757601

    申请日:2015-11-23

    Inventor: Tianchun Ye

    Abstract: A semiconductor device comprise a substrate, source/drain regions, a channel region, a gate dielectric layer and a gate conductive layer, wherein the gate dielectric layer comprises a barrier layer, a storage layer, a first interface layer, a tunneling layer, a second interface layer. In accordance with the semiconductor device and the manufacturing method of the present invention, an interface layer is added between the storage layer and tunneling layer in the gate dielectric by adjusting process step, and the peak concentration and peak location of nitrogen can be flexibly adjusted, effectively improving the quality of the interface between the storage layer and the tunneling layer in the gate dielectric layer, increasing process flexibility, improving device reliability and current characteristics.

    C-SHAPED ACTIVE AREA SEMICONDUCTOR DEVICE, METHOD OF MANUFACTURING THE SAME AND ELECTRONIC DEVICE INCLUDING THE SAME

    公开(公告)号:US20210175366A1

    公开(公告)日:2021-06-10

    申请号:US17112903

    申请日:2020-12-04

    Inventor: Huilong Zhu

    Abstract: A C-shaped active area semiconductor device and a method of manufacturing the same and electronic device including the semiconductor device are provided. According to embodiments, the semiconductor device includes: a channel portion extending vertically on a substrate; source/drain portions located at upper and lower ends of the channel portion relative to the substrate and along the channel portion, wherein the source/drain portion extends toward a side of the channel portion in a lateral direction relative to the substrate, so that the source/drain portions and the channel portion constitute a C-shaped structure; a gate stack that overlaps the channel portion on an inner sidewall of the C-shaped structure, wherein the gate stack has a portion surrounded by the C-shaped structure; and a back gate stack overlapping the channel portion on an outer sidewall of the C-shaped structure.

    Semiconductor device and method for manufacturing the same

    公开(公告)号:US11024708B1

    公开(公告)日:2021-06-01

    申请号:US16824761

    申请日:2020-03-20

    Abstract: A semiconductor device, including: a silicon substrate; multiple fin structures, formed on the silicon substrate, where each extends along a first direction; a shallow trench insulator, located among the multiple fin structures; a gate stack, intersecting with the multiple fin structures and extending along a second direction, where first spacers are formed on two sidewalls in the first direction of the gate stack; source-or-drain regions, formed on the multiple fin structures, and located at two sides of the gate stack along the first direction; and a channel region, including a portion of the multiple fin structures located between the first spacers. and notch structures. A notch structure recessed inward is located between each of the multiple fin structures and the silicon substrate. The notch structure includes an isolator that isolates each of the multiple fin structures from the silicon substrate.

    Method for cleaning lanthanum gallium silicate wafer

    公开(公告)号:US10964529B2

    公开(公告)日:2021-03-30

    申请号:US15300925

    申请日:2014-04-17

    Abstract: The present disclosure provides a method for cleaning a lanthanum gallium silicate wafer which comprises the following steps: at a step of 1, a cleaning solution constituted of phosphorous acid, hydrogen peroxide and deionized water is utilized to clean the lanthanum gallium silicate wafer with a megahertz sound wave; at a step of 2, the cleaned lanthanum gallium silicate wafer is rinsed and dried by spinning; at a step of 3, a cleaning solution constituted of ammonia, hydrogen peroxide and deionized water is utilized to clean the lanthanum gallium silicate wafer with the megahertz sound wave; at a step of 4, the cleaned lanthanum gallium silicate wafer is rinsed and dried by spinning; and at a step of 5, the rinsed and dried wafer is placed in an oven to be baked. The present invention shortens a period of acidic cleaning process and prolongs a period of alkaline cleaning and utilizes a more effective cleaning with megahertz sound wave to replace the conventional ultrasonic cleaning to solve the issue of cleaning the lanthanum gallium silicate wafer after a cutting process and to improve surface cleanliness of the lanthanum gallium silicate wafer to get a better cleaning effect.

    Serial PWM signal decoding circuit and method based on a capacitor charge-discharge structure and method thereof

    公开(公告)号:US10958261B2

    公开(公告)日:2021-03-23

    申请号:US16495485

    申请日:2017-03-20

    Abstract: The present disclosure provides a serial PWM signal decoding circuit based on a capacitor charge-discharge structure, comprising: a timing logic generation circuit configured to receive, at an input end of the timing logic generation circuit, a PWM differential signal, and generate a timing logic signal; and at least two capacitor charge-discharge decoding modules, each of the at least two capacitor charge-discharge decoding modules has an input end connected to an output end of the timing logic generation circuit, and is configured to perform charging and discharging based on the timing logic signal. During a decoding process, a voltage at a charge-discharge capacitor of the capacitor charge-discharge decoding module before the charging and discharging is a common mode voltage VCM, and a voltage at a charge-discharge node after the end of the charging and discharging is a voltage VC, and the PWM signal is decoded by identify the PWM signal through determining a polarity of a voltage difference between the common mode voltage VCM and the voltage VC. The present disclosure further provides a method of decoding based on a capacitor charge-discharge structure. The present disclosure provides a simple structure and does not need synchronize code streams, thus avoiding the use of a complicated CDR and an oversampling structure, realizing the decoding of PWM signals at different rates, increasing the efficiency of signal transmission and lowering the power consumption.

Patent Agency Ranking