Abstract:
Self-regulating pressure source. The pressure source includes a chamber enclosing a chemical monopropellant. A moveable boss is attached to a deformable membrane sealing an air chamber, the moveable boss and air chamber being disposed within the chamber. A catalyst is disposed around the membrane so as to be covered by the boss in a retracted position so that the monopropellant is broken down by the catalyst to produce a gas. The gas pressure will increase within the chamber causing air in the air chamber to compress thereby to pull the boss into the retracted position to cover the catalyst thereby to regulate the pressure within the chamber. The self-regulating pressure source is particularly suited to power fluidic elastomeric actuators.
Abstract:
The disclosure provides low cost, portable three-dimensional devices for performing multiplexed assays. The devices comprise at least two substantially planar layers disposed in parallel planes, wherein one of the layers is movable relative to each other parallel to the planes to permit the establishment of fluid flow communication serially between the two layers.
Abstract:
The present invention is directed to substrates comprising amplified patterns, methods for making the amplified patterns, and methods of using the amplified patterns to form surface features on the substrates.
Abstract:
The invention features an assay device, a microfluidic device, and a method of detecting the presence of high electrolyte concentration in a fluid sample. The assay device comprises a porous, hydrophilic substrate; a fluid-impermeable barrier defining a boundary of an assay region and a boundary of a main channel region, the main channel region fluidically connected to the assay region; and a strip of conductive material disposed on the porous, hydrophilic substrate. The microfluidic device comprises a porous, hydrophilic substrate; a fluid-impermeable barrier, the barrier permeating the thickness of the porous, hydrophilic substrate and defining within the porous, hydrophilic substrate a boundary of an open-ended channel having first and second lateral walls; and an electrically conductive pathway disposed on the porous, hydrophilic substrate, the electrically conductive pathway comprising (i) a strip of conductive material forming an open circuit in the absence of an electrically conductive material bridging the first and second lateral walls; and (ii) a battery, an electrically-responsive indicator, and a resistor electrically connected to the strip of conductive material.
Abstract:
Hydrophilic threads as platforms for inexpensive, low volume, portable diagnostic systems, and methods of making and using the same are described.
Abstract:
Articles and methods for determining an analyte indicative of a disease condition are provided. In some embodiments, articles and methods described herein can be used for determining a presence, qualitatively or quantitatively, of a component, such as a particular type of cell, in a fluid sample. In one particular embodiment, a low-cost microfluidic system for rapid detection of T cells is provided. The microfluidic system may use immobilized antibodies and adhesion molecules in a channel to capture T cells from a fluid sample such as a small volume of blood. The captured T cells may be labeled with a metal colloid (e.g., gold nanoparticles) using an antibody specific for the T Cell Receptor (TCR), and metallic silver can be catalytically precipitated onto the cells. The number of T cells captured can be counted and may indicate a disease condition of a patient such as severe combined immune deficiency or human immunodeficiency virus.
Abstract:
A self-assembled article includes a surface comprising an chemical functionality having an immobilized charge; and a plurality of particles assembled on the surface of the core, said particles having a surface comprising an immobilized chemical functionality of a charge opposite that of the core.
Abstract:
Methods for fabricating nanostructures and articles associated therewith are described. In some embodiments, an isolated nanostructure (e.g., a metal nanowire) or an array of nanostructures can be fabricated by depositing a material (e.g., a metal) on a surface having a plurality of protrusions or indentations. At least a portion of the deposited material may be embedded in an encapsulating material, and the encapsulating material can be cut, for instance, to form a thin slice that includes the deposited material at least partially embedded therein. In some instances, the slice can be positioned on a surface in a desired arrangement. The encapsulating material can be removed from the surface to form one or more isolated nanostructures of the deposited material. Advantageously, dimensions of the nanostructures can be controlled to, e.g., 15 run, to form nanostructures having a variety of shapes and geometries (e.g., wires, rings, and cylinders). Nanostructures can also be formed in a variety of materials, including metals, ceramics, and polymers. In addition, nanostructures can also be fabricated over large areas (e.g., greater than 1 mm 2 ). In some cases, these nanostructures are positioned in association with other components, e.g., to form a functional component of a device.
Abstract:
The present invention discloses a method of purifying bivalent antibodies or antibody fragments that are active at both Fab sites from a source of antibodies or antibody fragments using a non-chromatographic method that includes inducing the formation of cyclic immunoglobulin aggregates by addition of multivalent hapten to a salt solution of soluble antibodies or antibody fragments, wherein the multivalent hapten possesses a linker between the two haptens effective to prevent the binding of both haptens of the ligand to the same antibody or antibody fragment.
Abstract:
Disclosed herein are a variety of microfluidic devices and solid, typically electrically conductive devices that can be formed using such devices as molds. In certain embodiments, the devices that are formed comprise conductive pathways formed by solidifying a liquid metal present in one or more microfluidic channels (such devices hereinafter referred to as "microsolidic" devices). In certain such devices, in which electrical connections can be formed and/or reformed between regions in a microfluidic structure; in some cases, the devices/circuits formed may be flexible and/or involve flexible electrical components. In certain embodiments, the solid metal wires/conductive pathways formed in microfluidic channel(s) may remain contained within the microfluidic structure. In certain such embodiments, the conductive pathways formed may be located in proximity to other microfluidic channel(s) of the structure that carry flowing fluid, such that the conductive pathway can create energy (e.g. electromagnetic and/or thermal energy) that interacts withy and/or affects the flowing fluid and/or a component contained therein or carried thereby. In other embodiments, a microsolidic structure may be removed from a microfluidic mold to form a stand-alone structure. In certain embodiments, the solid metal structures formed may interact with light energy incident upon a structure or may be used to fabricate a light-weight electrode. Another aspect of the invention relates to the formation of self-assembled structures that may comprise these electrically conductive pathways/connections.