Abstract:
공정 시간을 단축시킬 수 있으며, 노광 한계치 이하의 선폭의 팁을 가지는 광 도파층을 구비한 반도체 레이저 다이오드의 제조방법을 개시한다. 개시된 본 발명은, 화합물 반도체 기판상에 다층의 액티브층을 형성한다음, 상기 다층의 액티브층 상부에 하드 마스크막을 형성한다. 그후, 상기 하드 마스크막 상부에 포토레지스트 패턴을 형성하고, 상기 포토레지스트 패턴과 하드 마스크막의 밀착력을 개선시키기 위해 상기 포토레지스트 패턴을 베이킹한다. 그 후에, 상기 베이킹된 포토레지스트 패턴을 마스크로 하여, 하드 마스크막을 언더컷 식각하여 하드 마스크 패턴을 형성한 다음, 상기 포토레지스트 패턴을 제거하고, 상기 하드 마스크 패턴의 형태로 상기 다층의 액티브층을 식각하여, 광 도파층을 형성한다. 언더컷, BOE, 실리콘 질화막, 광 도파층
Abstract:
본 발명은 광증폭기, 빔 조종기, 및 로렌드 원 형태를 갖는 오목 회절 격자를 단일 기판에 집적시켜 전기적으로 파장을 가변시킬 수 있는 파장 가변 광원 소자를 제공한다. 본 발명은 빔 조종기 내부의 두 개의 전극에 전기 신호를 인가하여 빔 경로를 조종하고, 조종된 빔의 경로는 회절 격자의 입사각을 변경시켜 발진 파장이 가변됨을 특징으로 한다. 본 발명은 전기적으로 파장 가변을 시키기 때문에 구조적으로 안정적이며, 파장 가변 속도도 빠른 장점을 가진다.
Abstract:
A method of manufacturing a semiconductor laser diode with a fine optical waveguide layer is provided to improve an optical output characteristic by manufacturing the reproducible fine optical waveguide layer having a line width under an exposure limit without a long time process by undercut-etching a hard mask film. A method of manufacturing a semiconductor laser diode with a fine optical waveguide layer includes the steps of: forming a multi-layered active layer on a compound semiconductor substrate(100); forming a hard mask film on a top of the multi-layered active layer; forming a photo-resist pattern(140) on a top portion of the hard mask film; baking the photo-resist pattern(140) to improve adhesion between the photo-resist pattern(140) and the hard mask film; forming a hard mask pattern by undercut-etching the hard mask film by using the baked photo-resist pattern(140) as a mask; removing the photo-resist pattern(140); and forming an optical waveguide layer by the multi-layered active layer in a shape of the hard mask pattern.
Abstract:
본 발명은 방사형으로 진행하는 광을 편향하는 광 편향기에 관한 것으로, 제1 유효굴절율을 가지는 주변영역; 및 상기 제1 유효굴절율과 다른 제2 유효굴절율을 가지는 소정 형상의 편향패턴 영역을 포함하되, 상기 소정 형상의 편향 패턴 영역에 의해서, 방사형으로 진행하는 광은 특정점에서 출발하여 진행하는 것으로 편향된다. 이를 통해서, 광원의 이동 궤적은 직선, 원, 타원, 포물선 등 다양한 형태가 되도록 설계할 수 있다. 광 편향기, 방사 광, 편향
Abstract:
본 발명은 광소자 및 광소자의 제조 방법에 관한 것으로, 능동 도파로와 수동 도파로가 집적된 광소자에 있어서, 수동 도파로에 도핑되지 않은 클래딩막을 형성함으로써, 수동 도파로의 광 도파 손실을 줄일 수 있고, 능동 도파로의 전류 누설을 방지하기 위한 별도의 패시베이션막 형성공정을 생략할 수 있는 광소자 및 광소자의 제조 방법을 제공한다.
Abstract:
PURPOSE: A distributed reflection laser diode including a spot-size converter and a DFB(Distributed FeedBack) laser diode is provided to increase a single mode yield and an optical output regardless of a phase of a diffraction grid by forming the spot-size converter and the DFB laser diode with one body. CONSTITUTION: A distributed reflection laser diode including a spot-size converter and a DFB laser diode includes a substrate(700), a bottom clad layer(710), a diffraction grid(720), a passive waveguide layer(740), an intermediate clad layer(750), an active layer(760), a top clad layer(770), and a ridge(780). The bottom clad layer(710) is formed on the substrate(700). The diffraction grid(720) is formed on the bottom clad layer. A bottom clad layer and an optical waveguide layer are formed on the diffraction grid. The passive waveguide layer(740) is formed on the optical waveguide layer to transmit beams to the third region. The intermediate clad layer(750) is formed on the passive waveguide layer. The active layer(760) is formed on the intermediate clad layer to transfer the beams from the second region to the passive waveguide layer. The top clad layer(770) is formed on the active layer. The ridge(780) is formed on the top clad layer. The ridge has a tapering structure.
Abstract:
A semiconductor optical device with a differential grating formed by a holography method and a method for manufacturing the same are provided. The provided semiconductor optical device includes an n-type InP substrate, a stack structure on the InP substrate having a waveguide and active layers, a first grating formed under the stack structure and on the InP substrate, and a second grating formed on the stack structure. The provided method for manufacturing the semiconductor optical device forms a first grating on the n-type InP substrate and under the active layer, and forms a second grating on the active layer. The first and second gratings are formed by the holography method.
Abstract:
PURPOSE: A wavelength conversion type electro-optic clock multiplier is provided to perform simultaneously a process for multiplying a frequency of an optical clock and a process for wavelength conversions providing an optical transmission system combined a WDM(wavelength division multiplexing) with a TDM(time division multiplexing) system with a flexible use. CONSTITUTION: A wavelength conversion type electro-optic clock multiplier includes a first photo coupler, a semiconductor optical amplifier, and a second photo coupler. The first photo coupler(13) is used for dividing the continuous beam of desired wavelength to paths. The semiconductor optical amplifier(16) is used for performing a phase modulation process for the continuous beam passing through the first path of two paths according to an optical clock having an arbitrary wavelength. The second photo coupler(14) is used for coupling the output light source from semiconductor optical amplifier to the continuous beam outputted from the second path of the first photo coupler.
Abstract:
PURPOSE: A method for fabricating an optical integrated circuit is provided to reduce the quantity of an etch byproduct and prevent an incomplete cleaving phenomenon by selectively wet-etching the second clad layer and by dry-etching the first clad layer, a core layer and a substrate. CONSTITUTION: An active device region and a passive device region are defined in a compound substrate(100). The core layer(105a,105b) and the first clad layer(110) are sequentially stacked on the compound substrate. An etch stopper(115) is formed on the first clad layer in the passive device region. A mask pattern for forming a waveguide is formed on the active device region and the passive device region. The passive device region is covered with the first passivation layer. A predetermined thickness of the first clad layer, the core layer and the compound substrate is etched to form an active device waveguide(130) by using the mask pattern in the exposed active device region. The first passivation layer is removed. The second clad layer is formed on the resultant structure. The active device region is covered with the second passivation layer. The second clad layer is wet-etched to expose the mask pattern in the passive device region. The etch stopper is wet-etched to have the type of the mask pattern in the passive device region. The first clad layer, the core layer and the compound substrate are dry-etched by a predetermined thickness to have the mask pattern in the passive device region so that an active device waveguide is formed.
Abstract:
A method of fabricating a monolithic integrated semiconductor photonic device is provided. In this method, it is possible to remarkably reduce an optical loss in a passive waveguide by forming a non-doped clad layer around a passive layer. Thus, the passive waveguide can be effectively coupled with an active waveguide. Further, a current confinement layer is formed around an active layer, using the non-doped clad layer. Therefore, an expensive tool such as an ion implanter is not required, thereby decreasing manufacturing costs.