Abstract:
반도체소자및 이를제조하는방법을제공한다. 반도체소자는, 제1 상부면, 제1 상부면보다낮은제2 상부면과, 제1 및제2 상부면사이의제1 수직면을포함하는기판, 제1 상부면에형성된제1 소스/드레인영역, 수직면으로부터, 수직면과수직인방향으로제2 상부면과이격되어연장하는제1 나노와이어, 제1 나노와이어의일 측면으로부터, 제1 나노와이어의연장방향과동일한방향으로제2 상부면과이격되어연장하고제2 불순물영역을포함하는제2 나노와이어, 제1 나노와이어상에배치되는게이트전극, 그리고, 제1 나노와이어및 게이트전극사이에개재되는유전체막을포함한다.
Abstract:
A method for separating/converting a multiband signal and an apparatus thereof are provided to expand the service available area regardless of the type of an input/output signal by using the first switch and a photo-electric converter. A photoelectric converter(203) converts an optical signal received from the outside into an electric signal. The first switch(205) separates the converted electric signal according to each frequency band. The first mobile communication band amplifier(207) amplifies a signal of the mobile communication band among signals separated by the first switch. A broadband up-converter(209) up-converts the frequency of a baseband signal among the signals separated by the first switch. The first broadband amplifier(211) amplifies the up-converted signal. A transmitter(215) wirelessly transmits signals amplified by the broadband amplifier and a mobile communication amplifier.
Abstract:
A method for generating terahertz waves using a DFB(Distributed feedback) laser device is provided to change difference between two mode frequencies emitted from a multiregional DFB laser device from a low frequency to a THz region by changing period difference of a diffraction grating. A first diffraction grating is formed in a first DFB region including a lower waveguide(102) on a substrate(101), an active layer(110) formed on the lower waveguide, and a waveguide on the active layer. A second diffraction grating is formed in a second DFB region which is separated from the first DFB region and includes the lower waveguide, the active layer, and the upper waveguide on the substrate. A phase tuning section is formed between the first DFB region with the first diffraction grating and the second DFB region with the second diffraction grating. A first oscillating wave and a second oscillating wave are generated in the first and second DFB regions by supplying a first current to the first DFB region with the first diffraction grating and a second current to the second DFB region with the second diffraction grating. The phases of the fist and second oscillating waves are controlled by supplying a phase control current to the phase tuning section. The first and second oscillating waves with controlled phases are photo-mixed.
Abstract:
A DBR(Distributed Bragg Reflector) in a vertical cavity surface emitting laser diode and a manufacturing method thereof, and a vertical cavity surface emitting laser diode are provided to obtain a high reflection factor without an optical loss of photons generated from an active layer by reducing an absorption band. In a DBR in a vertical cavity surface emitting laser diode, an InAlGaAs layer(341) has a predetermined reflection factor and is formed on an InP substrate. A first InAlAs layer(342) of a lower reflection factor than the InAlGaAs layer(341) is formed on the InAlGaAs layer(341). An InP layer(343) of a lower reflection factor than the InAlGaAs layer(341) is formed on the first InAlAs layer(342). A second InAlAs layer(344) of a lower reflection factor than the InAlGaAs layer(341) is formed on the InP layer(343).
Abstract:
본 발명은 가입자용이나 파장분할다중(WDM) 방식의 광통신 시스템에 사용되는 반도체 광소자의 제작 방법에 관한 것으로, 단일 활성층에 레이저 다이오드(Laser Diode; LD)와 반도체 광증폭기(Semiconductor Optical Amplifier; SOA)가 집적된다. 레이저 다이오드와 반도체 광증폭기는 서로 광학적으로 연결되며, 이온 주입에 의해 전기적으로 절연된다. 각각의 전극을 통해 독립적으로 전류를 주입하면 레이저 다이오드(LD)에서 생성된 광이 반도체 광증폭기(SOA)에 의해 증폭되기 때문에 발진개시전류가 낮고 출력광의 세기가 높다. 반도체 광증폭기, 레이저 다이오드, 전류차단층, 전류주입층, 이온주입
Abstract:
본 발명은 레이저 광의 위상 변화에도 모드 호핑이나 다중 모드로 되는 일이 없도록 하기 위하여, 복합결합 회절격자 및 발진되는 레이저 빛의 세기를 조절하는 활성구조를 갖추어 레이저 빛을 단일 모드로 발진하는 DFB 레이저영역과, 귀환되는 레이저 빛의 위상변화를 조절하는 도파층을 갖춘 위상조절영역, 귀환되는 레이저 빛의 세기를 조절하는 활성구조를 갖춘 증폭영역으로 이루어진 외부 공진기를 단일 기판상에 일체로 집적한 다영역 반도체 레이저 다이오드로서, 3영역들의 주입전류를 적절히 조절하고 변화시킴으로써 고주파의 광펄스를 발생하고 안정적으로 주파수가 변화한다.
Abstract:
PURPOSE: A method for fabricating a semiconductor photonic device is provided to form simultaneously two waveguides by performing a lithography process using a self-alignment method. CONSTITUTION: The first waveguide layer(302), the first clad layer(304), the second waveguide layer(306), and the second clad layer are sequentially stacked on a semiconductor substrate(300). The first hard mask is deposited on the second clad layer in order to form the first hard mask pattern. The second clad layer and the second waveguide layer are etched by using the first hard mask as an etch mask. An undoped InP layer is selectively grown on the etched part of the second clad layer and the second waveguide layer. The first hard mask pattern is removed. The second had mask pattern is formed on the resultant. The second waveguide layer and the first waveguide layer having different width are simultaneously formed by etching the undoped InP layer, the second clad layer, the second waveguide layer, the first clad layer, and the first waveguide layer.