Abstract:
Technologies for improving platform initialization on a computing device include beginning initialization of a platform of the computing device using a basic input/output system (BIOS) of the computing device. A security co-processor driver module adds a security co-processor command to a command list when a security processor command is received from the BIOS module. The computing device establishes a periodic interrupt of the initialization of the platform to query the security co-processor regarding the availability of a response to a previously submitted security co-processor command, forward any responses received by the security co-processor driver module to the BIOS module, and submit the next security co-processor command in the command list to the security co-processor.
Abstract:
A system and method for BIOS flash attack protection and notification. A processor initialization module, including initialization firmware verification module may be configured to execute first in response to a power on and/or reset and to verify initialization firmware stored in non-volatile memory in a processor package. The initialization firmware is configured to verify the BIOS. If the verification of the initialization firmware and/or the BIOS fails, the system is configured to select at least one of a plurality of responses including, but not limited to, preventing the BIOS from executing, initiating recovery, reporting the verification failure, halting, shutting down and/or allowing the BIOS to execute and an operating system (OS) to boot in a limited functionality mode.
Abstract:
In an embodiment, a system on a chip includes: a single core to execute a legacy instruction set, the single core configured to enter a system management mode (SMM) to provide a trusted execution environment to perform at least one secure operation; and a memory controller coupled to the single core, the memory controller to interface with a system memory, where a portion of the system memory comprises a secure memory for the SMM, and the single core is to authenticate and execute a boot firmware, and pass control to the SMM to obtain a key pair from a protected storage and store the key pair in the secure memory. Other embodiments are described and claimed.
Abstract:
An embodiment includes an apparatus comprising: an out-of-band cryptoprocessor coupled to secure non-volatile storage; and at least one storage medium having firmware instructions stored thereon for causing, during runtime and after an operating system for the apparatus has booted, the cryptoprocessor to (a) store a key within the secure non-volatile storage, (b) sign an object with the key, while the key is within the cryptoprocessor, to produce a signature, and (c) verify the signature. Other embodiments are described herein.
Abstract:
The present disclosure is directed to flexible bootstrap code architecture. A device may comprise equipment for operating the device and an operating system (OS) for operating the equipment. A boot module may also be included in the device to execute boot operations. At least one flexible boot (FB) module in the boot module may interact with the equipment and/or OS during the boot operations to cause the boot operations to become device-specific. An example boot module may comprise a plurality of FB modules. An example FB module may verify a device/chipset identification and may control the boot operations based on the identification. Other example FB modules may select resources to load based on an OS type, may provide a boot configuration table location for use in OS runtime boot configuration or may load variables from a preload variable directory for use in configuring boot operations.
Abstract:
Methods and apparatus relating to pre-OS (pre Operating System) image rewriting to provide cross-architecture support, security introspection, and/or performance optimization are described. In an embodiment, logic rewrites a non-native firmware interface driver into a native firmware interface driver in response to a determination that sufficient space is available in an integrity cache storage device to store the native firmware interface driver. The logic rewrites the non-native firmware interface driver into the native firmware interface driver by performing one or more of its operations during operating system runtime. Other embodiments are also claimed and described.
Abstract:
A method and apparatus for improving the resume time of a platform. In one embodiment of the invention, the context of the platform is saved prior to entering an inactive state of the platform. When the platform is switched back to an active state, it reads the saved context and restores the platform to its original state prior to entering the inactive state. In one embodiment of the invention, the platform determines whether it should compress the saved context before storing it in a non-volatile memory based on the operating condition of the platform. This allows the platform to select the optimum method to allow faster resume time of the platform.
Abstract:
Radio frequency identification (RFID) tags embedded in processors within a computing system provide a separate communication path to other components of the computing system during initialization processing, apart from the system interconnect. Upon powering up, each processor causes its RFID tag to broadcast data regarding the processor's interconnect location and initialization status. A RFID receiver senses the RFID tags in the Platform Control Hub (PCH), and each processor's interconnect location and initialization status data is stored in registers within the PCH. During system initialization processing, the BIOS accesses these PCH registers to obtain the processor's data. The interconnect location and initialization status data is used by the BIOS to select the optimal routing table and configure the virtual network within the computing system based on the optimal routing table and the RFID tag data, without interrogating each processor individually over the system interconnect.
Abstract:
Platform controller, computer-readable storage media, and methods associated with initialization of a computing device. In embodiments, a platform controller may comprise a boot controller and one or more non-volatile memory modules, coupled with the boot controller. In embodiments, the one or more non-volatile memory modules may have first instructions and second instructions stored thereon. The first instructions may, when executed by a processor of a computing device hosting the platform controller, cause initialization of the computing device. The second instructions, when executed by the boot controller, may cause the boot controller to monitor at least a portion of the execution of the first instructions by the computing device and may generate a trace of the monitored portion of the execution of the first instructions. In embodiments, the trace may be stored in the one or more non-volatile memory modules. Other embodiments may be described and/or claimed.