Abstract:
Embodiments of the present disclosure may relate to a transmitter that includes a baseband dispersion compensator to perform baseband dispersion compensation on an input signal. Embodiments may also include a receiver that includes a radio frequency (RF) dispersion compensator to perform RF dispersion compensation. Embodiments may also include a dielectric waveguide coupled with the transmitter and the receiver, the dielectric waveguide to convey the RF signal from the transmitter to the receiver. Other embodiments may be described and/or claimed.
Abstract:
Embodiments of the invention include a microelectronic device that includes a first substrate having radio frequency (RF) components and a second substrate that is coupled to the first substrate. The second substrate includes a first conductive layer of an antenna unit for transmitting and receiving communications at a frequency of approximately 4 GHz or higher. A mold material is disposed on the first and second substrates. The mold material includes a first region that is positioned between the first conductive layer and a second conductive layer of the antenna unit with the mold material being a dielectric material to capacitively couple the first and second conductive layers of the antenna unit.
Abstract:
Embodiments of the invention include a piezoelectric package integrated filtering device that includes a film stack. In one example, the film stack includes a first electrode, a piezoelectric material in contact with the first electrode, and a second electrode in contact with the piezoelectric material. The film stack is suspended with respect to a cavity of an organic substrate having organic material and the film stack generates an acoustic wave to be propagated across the film stack in response to an application of an electrical signal between the first and second electrodes.
Abstract:
Embodiments of the invention include a waveguide structure that includes a first piezoelectric transducer that is positioned in proximity to a first end of a cavity of an organic substrate. The first piezoelectric transducer receives an input electrical signal and generates an acoustic wave to be transmitted with a transmission medium. A second piezoelectric transducer is positioned in proximity to a second end of the cavity. The second piezoelectric transducer receives the acoustic wave from the transmission medium and generates an output electrical signal.
Abstract:
Embodiments of the invention include a filtering device that includes a first electrode, a piezoelectric material in contact with the first electrode, and a second electrode in contact with the piezoelectric material. The piezoelectric filtering device expands and contracts laterally in a plane of an organic substrate in response to application of an electrical signal between the first and second electrodes.
Abstract:
Embodiments of the invention include a microelectronic device that includes a first die formed with a silicon based substrate and a second die coupled to the first die. The second die is formed with compound semiconductor materials in a different substrate (e.g., compound semiconductor substrate, group III-V substrate). An antenna unit is coupled to the second die. The antenna unit transmits and receives communications at a frequency of approximately 4 GHz or higher.
Abstract:
Embodiments of the invention include a microelectronic device that includes a die having at least one transceiver unit, a redistribution package coupled to the die, and a substrate coupled to the redistribution package. The substrate includes an antenna unit for transmitting and receiving communications at a frequency of approximately 4 GHz or higher.
Abstract:
A blade computing system is described with a wireless communication between blades. In one embodiment, the system includes a first blade in the enclosure having a radio transceiver to communicate with a radio transceiver of a second blade in the enclosure. The second blade has a radio transceiver to communicate with the radio transceiver of the first blade. A switch in the enclosure communicates with the first blade and the second blade and establishes a connection through the respective radio transceivers between the first blade and the second blade.
Abstract:
Magnetically enhanced inductors integrated with microelectronic devices at chip-level. In embodiments, magnetically enhanced inductors include a through substrate vias (TSVs) with fill metal to carry an electrical current proximate to a magnetic layer disposed on a substrate through which the TSV passes. In certain magnetically enhanced inductor embodiments, a TSV fill metal is disposed within a magnetic material lining the TSV. In certain magnetically enhanced inductor embodiments, a magnetically enhanced inductor includes a plurality of interconnected TSVs disposed proximate to a magnetic material layer on a side of a substrate. In embodiments, voltage regulation circuitry disposed on a first side of a substrate is integrated with one or more magnetically enhanced inductors utilizing a TSV passing through the substrate. In further embodiments, integrated circuitry on a same substrate as the magnetically enhanced inductor, or on another substrate stacked thereon, completes the VR and/or is powered by the VR circuitry.
Abstract:
A glass-based, high-performance 60 GHz/ mm-wave antenna includes cavities disposed in a phased-array antenna (PAA) substrate. The cavities are disposed below planar antenna elements. Emitter traces are disposed on the PAA substrate opposite the planar antenna elements and the emitter traces, the cavities, and the planar antenna elements are vertically aligned.