ELECTRO-OPTIC STRUCTURE AND PROCESS FOR FABRICATING SAME
    69.
    发明申请
    ELECTRO-OPTIC STRUCTURE AND PROCESS FOR FABRICATING SAME 审中-公开
    电光结构及其制造方法

    公开(公告)号:WO0227362A3

    公开(公告)日:2003-07-31

    申请号:PCT/US0128096

    申请日:2001-09-07

    Applicant: MOTOROLA INC

    CPC classification number: G02B6/12004 G02B6/131 G02F1/0338 G02F1/035

    Abstract: High quality epitaxial layers of oxide can be grown overlying large silicon wafers (22) by first growing an accommodating buffer layer (26) on a silicon wafer. The accommodating buffer layer is a layer of monocrystalline oxide spaced apart from the silicon wafer by an amorphous interface layer (24) of silicon oxide. The amorphous intermediate layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. Any lattice mismatch between the accommodating buffer layer and the underlying silicon substrate is taken care of by the amorphous intermediate layer. Waveguides (45) may be formed of high quality monocrystalline material atop the monocrystalline buffer layer. The waveguides can suitably be formed to modulate the wave. Monolithic integration of oxide based electro-optic devices with III-V based photonics and Si circuitry is fully realized.

    Abstract translation: 通过首先在硅晶片上生长容纳缓冲层(26),可以生长覆盖大硅晶片(22)的氧化物的高质量外延层。 容纳缓冲层是通过氧化硅的非晶界面层(24)与硅晶片间隔开的单晶氧化物层。 无定形中间层耗散应变并允许高质量单晶氧化物容纳缓冲层的生长。 通过无定形中间层处理容纳缓冲层和下面的硅衬底之间的任何晶格失配。 波导(45)可以由单晶缓冲层顶部的高质量单晶材料形成。 可以适当地形成波导以调制波。 基于氧化物的电光器件与基于III-V的光子学和Si电路的单片集成完全实现。

    III-V ARSENIDE NITRIDE SEMICONDUCTOR SUBSTRATE
    70.
    发明申请
    III-V ARSENIDE NITRIDE SEMICONDUCTOR SUBSTRATE 审中-公开
    III-V族氮化物半导体基底

    公开(公告)号:WO03009344A3

    公开(公告)日:2003-04-10

    申请号:PCT/US0211023

    申请日:2002-04-09

    Applicant: MOTOROLA INC

    Abstract: High quality epitaxial layers of monocrystalline III-V arsenide nitride materials can be grown overlying monocrystalline substrates such as large silicon wafers by forming a compliant substrate for growing the monocrystalline layers. One way to achieve the formation of a compliant substrate includes first growing an accommodating buffer layer (74, 104) on a silicon wafer (72, 102). The accommodating buffer layer is a layer of monocrystalline oxide spaced apart from the silicon wafer by an amorphous interface layer (78, 108) of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. The accommodating buffer layer is lattice matched to both the underlying silicon wafer and the overlying monocrystalline III-V arsenide nitride material layer. Any lattice mismatch between the accommodating buffer layerand the underlying silicon substrate is taken care of by the amorphous interface layer. In addition, an accommodating buffer layer comprising a barium strontium titanium oxide (104) and a monocrystalline III-V arsenide nitride layer (86, 116), such as GaAsN, having a nitrogen concentration ranging from 1-5% function to further reduce any lattice mismatch between layers.

    Abstract translation: 通过形成用于生长单晶层的柔性衬底,可以生长单晶III-V砷化镓材料的高质量外延层,覆盖单晶衬底,例如大硅晶片。 实现柔性衬底的形成的一种方式包括首先在硅晶片(72,102)上生长适应缓冲层(74,104)。 适应缓冲层是由硅氧化物的非晶界面层(78,108)与硅晶片隔开的单晶氧化物层。 非晶界面层消散应变并允许高质量单晶氧化物容纳缓冲层的生长。 适应缓冲层与下面的硅晶片和上面的单晶III-V氮化砷材料层晶格匹配。 适应缓冲层和底层硅衬底之间的任何晶格失配由无定形界面层处理。 另外,包含钡锶钛氧化物(104)和氮浓度范围为1-5%的单晶III-V砷化镓氮化物层(86,116)(例如GaAsN)的调节缓冲层用于进一步减少 层之间的晶格失配。

Patent Agency Ranking