Abstract:
A method of manufacturing a semiconductor device includes: providing a semiconductor having active regions; depositing a dielectric layer on the semiconductor; forming a patterned etch mask on the dielectric layer; depositing a further dielectric layer on the dielectric layer and the patterned etch mask; planarizing the further dielectric layer until the patterned etch mask is exposed; and forming a further patterned etch mask having an opening on the further dielectric layer so that portions of the patterned etch mask are exposed from the opening.
Abstract:
A method for fabricating semiconductor device is disclosed. First, a substrate is provided, in which the substrate includes a first metal gate and a second metal gate thereon, a first hard mask on the first metal gate and a second hard mask on the second metal gate, and a first interlayer dielectric (ILD) layer around the first metal gate and the second metal gate. Next, the first hard mask and the second hard mask are used as mask to remove part of the first ILD layer for forming a recess, and a patterned metal layer is formed in the recess, in which the top surface of the patterned metal layer is lower than the top surfaces of the first hard mask and the second hard mask.
Abstract:
Semiconductor devices having metal gate include a substrate, a first nFET device formed thereon, and a second nFET device formed thereon. The first nFET device includes a first n-metal gate, and the first n-metal gate includes a third bottom barrier metal layer and an n type work function metal layer. The n type work function metal layer directly contacts the third bottom barrier layer. The second nFET device includes a second n-metal gate and the second n-metal gate includes a second bottom barrier metal layer, the n type work function metal layer, and a third p type work function metal layer sandwiched between the second bottom barrier metal layer and the n type work function metal layer. The third p type work function metal layer of the second nFET device and the third bottom barrier metal layer of the first nFET device include a same material.
Abstract:
A semiconductor device is disclosed. The semiconductor device includes: a substrate; a first metal gate on the substrate; a first hard mask on the first metal gate; an interlayer dielectric (ILD) layer on top of and around the first metal gate; and a patterned metal layer embedded in the ILD layer, in which the top surface of the patterned metal layer is lower than the top surface of the first hard mask.
Abstract:
A semiconductor structure is provided, including a substrate, a plurality of first semiconductor devices, a plurality of second semiconductor devices, and a plurality of dummy slot contacts. The substrate has a device region, wherein the device region includes a first functional region and a second functional region, and a dummy region is disposed therebetween. The first semiconductor devices and a plurality of first slot contacts are disposed in the first functional region. The second semiconductor devices and a plurality of second slot contacts are disposed in the second functional region. The dummy slot contacts are disposed in the dummy region.
Abstract:
A semiconductor device structure having at least one thin-film resistor structure is provided. Through the metal plug(s) or metal wirings located on different layers, a plurality of stripe segments of the thin-film resistor structure is electrically connected to ensure the thin-film resistor structure with the predetermined resistance and less averting areas in the layout design.
Abstract:
A fabrication method of a semiconductor structure includes the following steps. First of all, a gate structure is provided on a substrate, and a first material layer is formed on the substrate and the gate structure. Next, boron dopant is implanted to the substrate, at two sides of the gate structure, to form a first doped region, and P type conductive dopant is implanted to the substrate, at the two sides of the gate structure, to form a second doped region. As following, a second material layer is formed on the first material layer. Finally, the second material layer, the first material layer and the substrate at the two sides of the gate structure are etched sequentially, and a recess is formed in the substrate, at the two sides of the gate structure, wherein the recess is positioned within the first doped region.
Abstract:
A manufacturing method for forming a semiconductor device includes: first, a substrate is provided, a fin structure is formed on the substrate, and a plurality of gate structures are formed on the fin structure, next, a hard mask layer and a first photoresist layer are formed on the fin structure, an first etching process is then performed on the first photoresist layer, afterwards, a plurality of patterned photoresist layers are formed on the remaining first photoresist layer and the remaining hard mask layer, where each patterned photoresist layer is disposed right above each gate structure, and the width of each patterned photoresist is larger than the width of each gate structure, and the patterned photoresist layer is used as a hard mask to perform an second etching process to form a plurality of second trenches.
Abstract:
The metal gate structure includes at least a substrate, a dielectric layer, first and second trenches, first metal layer and second metal layers, and two cap layers. In particular, the dielectric layer is disposed on the substrate, and the first and second trenches are disposed in the dielectric layer. The width of the first trench is less than the width of the second trench. The first and second metal layers are respectively disposed in the first trench and the second trench, and the height of the first metal layer is less than or equal to the height of the second metal layer. The cap layers are respectively disposed in a top surface of the first metal layer and a top surface of the second metal layer.
Abstract:
A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate having a metal gate thereon and an interlayer dielectric (ILD) layer around the metal gate; removing part of the metal gate to form a recess; and depositing a mask layer in the recess and on the ILD layer while forming a void in the recess.