Abstract:
Um bekannte Verfahren zur Herstellung eines Verbundkörpers mit einer ersten Schicht aus hochkieselsäurehaltigem Werkstoff mit einer Zusatzkomponente in einer ersten Konzentration, verbunden mit einer zweiten Schicht aus hochkieselsäurehaltigem Werkstoff mit einer Zusatzkomponente in einer von der ersten Konzentration abweichenden zweiten Konzentration, wobei die erste und die zweite Konzentration größer oder gleich Null ist, dahingehend zu optimieren, dass ein mechanisch und thermisch stabiler Verbundkörpers kostengünstig hergestellt werden kann und großflächige Fügeverbindungen durch Verschweißen realisierbar sind, wird erfindungsgemäß ein Verfahren vorgeschlagen, das folgende Verfahrensschritte umfasst: (a) Herstellen eines eine freie Oberfläche aufweisenden ersten Schlickerschicht unter Einsatz einer ersten Schlickermasse, die ein erstes Dispergiermittel und darin dispergiert erste SiO 2 -Teilchen und die Zusatzkomponente in einer ersten Konzentration enthält, (b) Bereitstellen einer zweiten Schlickermasse, die ein zweites Dispergiermittel und darin dispergiert zweite SiO 2 -Teilchen und die Zusatzkomponente in einer zweiten Konzentration enthält, die sich von der ersten Konzentration unterscheidet, (c) Bildung eines Verbundkörper-Vorprodukts durch Auftragen der zweiten Schlickermasse auf die freie Oberfläche der ersten Schlickerschicht, und (d) Erhitzen des Verbundkörper-Vorprodukts unter Bildung des Verbundkörpers.
Abstract:
A method of fabricating a semiconductor metamaterial is provided, comprising providing a sample of engineered microstructured material that is transparent to electromagnetic radiation and comprises one or more elongate, high aspect ratio voids, passing through the voids a high pressure fluid comprising a semiconductor material carried in a carrier fluid, and causing the semiconductor material to deposit onto the surface of the one or more voids of the engineered microstructured material to form the metamaterial. Many microstructured materials and semiconductor materials can be used, together with various techniques for controlling the location, spatial extent, and thickness of the deposition of the semiconductor within the microstructured material, so that a wide range of different metamaterials can be produced.
Abstract:
Filament in tube and stick in tube processes of forming optical fiber are described. A solid or monolithic core feedstock (110) is disposed in a hollow cladding structure (112) to form a loosely filled cladding structure. The filled cladding structure is heated to a draw temperature approximately equal to the softening temperature of the cladding structure. The feedstock (110) melts and fills the heated portion of the cladding structure forming a filled core which can then be drawn into optical fiber or to an optical can which can then be further overclad consolidated and drawn into fiber. Feedstock (110) and cladding structures (112) having widely varying coefficients of expansion may be employed. The resulting fiber can be readily designed to be fused to existing installed fibers.
Abstract:
Disclosed is an optical device (10) and a method for preparing refracted microlenses (18) in a single step, utilizing laser-induced surface structure formation in semiconductor doped glasses (SDG's). The SDG materials, in conjunction with above-bandgap wavelength laser sources, used to fabricate lenses that operate with light of below-bandgap wavelengths. In accordance with the teaching of this invention, lenses on approximately 5-500 νm diameter scale are fabricated individually or arrays by laser irradiation of absorbing glasses. The microlenses have controllable characteristics and can be fabricated to have focal lengths as short as tens of microns. The lenses are generally parabolic or spherical in shape and are highly reproducible. This invention also teaches a method for fabricating a microlens within a window of a laser diode assembly, and a laser diode assembly fabricated in accordance with the method.
Abstract:
L'invention concerne une fibre optique (100) pour la détection et/ou la mesure quantitative d'hydrogène comportant un cœur (110) de fibre et au moins une gaine optique (120) entourant le cœur (110), au moins l'un parmi le cœur (110) et la gaine optique (120) étant réalisé majoritairement en verre de silice. La fibre optique (100) comporte du palladium sous forme métallique inclus dans au moins une partie de fibre réalisée majoritairement en verre de silice sélectionnée parmi le cœur (110) et la gaine optique (120). L'invention concerne également un procédé de fabrication d'une telle fibre optique (100), une utilisation de cette fibre optique (100), et un système de détection et/ou de mesure quantitative d'hydrogène comportant une telle fibre optique (100).
Abstract:
Filament in tube and stick in tube processes of forming optical fiber are described. A solid or monolithic core feedstock (110) is disposed in a hollow cladding structure (112) to form a loosely filled cladding structure. The filled cladding structure is heated to a draw temperature approximately equal to the softening temperature of the cladding structure. The feedstock (110) melts and fills the heated portion of the cladding structure forming a filled core which can then be drawn into optical fiber or to an optical can which can then be further overclad consolidated and drawn into fiber. Feedstock (110) and cladding structures (112) having widely varying coefficients of expansion may be employed. The resulting fiber can be readily designed to be fused to existing installed fibers.
Abstract:
Disclosed is an optical device (10) and a method for preparing refracted microlenses (18) in a single step, utilizing laser-induced surface structure formation in semiconductor doped glasses (SDG's). The SDG materials, in conjunction with above-bandgap wavelength laser sources, used to fabricate lenses that operate with light of below-bandgap wavelengths. In accordance with the teaching of this invention, lenses on approximately 5-500 mu m diameter scale are fabricated individually or arrays by laser irradiation of absorbing glasses. The microlenses have controllable characteristics and can be fabricated to have focal lengths as short as tens of microns. The lenses are generally parabolic or spherical in shape and are highly reproducible. This invention also teaches a method for fabricating a microlens within a window of a laser diode assembly, and a laser diode assembly fabricated in accordance with the method.