Abstract:
An elastic thermoplastic diaphragm for use in a vessel having an inner surface. The vessel includes a liner that has an inner liner surface and first and second ends. A first endcap is secured to the liner first end and a second endcap to the liner second end. The diaphragm is secured to the inner vessel surface and seals along a peripheral edge to the vessel inner surface so as to define a volume inside the vessel. The diaphragm can flex, and thereby increase or decrease the volume.
Abstract:
An accumulator (ACC) in which a container main body(1) and a closure member (5) are screw-joined together. A reverse-buttress internal thread or an internal thread having an included angle of 90 degrees is used as an internal thread of the screw-joined portion. The reverse-buttress internal thread is formed in such a way that the inclination angle (β) of a clearance flank of the buttress internal thread is the inclination angle (β) of a reverse pressure flank (20A) receiving a load, the inclination angle (θ) of a pressure flank is the inclination angle (θ) of a reverse clearance flank (2B). The internal thread having an included angle of 90 degrees is formed in such a way that inclination angles (α), (γ) of both flanks are equal and the included angle (δ) is about 90 degrees.
Abstract:
Il s'agit d'un réservoir de pression dont le séparateur souple (12) comporte trois couches, à savoir une couche externe (21A), une couche interne (21B), et une couche intermédiaire (23) au moins en partie imperméable aux gaz. Suivant l'invention, la couche intermédiaire (23) comporte une feuille métallique (24). Application, notamment, aux réservoirs de pression destinés à l'équipement de circuits de freinage.
Abstract:
Disclosed is a diaphragm having a flexible film portion and an outer peripheral flange portion integrally provided on the peripheral edge of the film portion, said outer peripheral flange portion being provided between and held by a first housing and a second housing, wherein the film portion is prevented from rising upward when the diaphragm is attached to the housings. The outer peripheral flange portion has a first pressed surface which is one surface of the diaphragm in the thickness direction and which is in close contact with the first housing, and a three-dimensional shape composed of a projected portion or a recessed portion, on the first pressed surface. When the outer peripheral flange portion is attached to the first housing and the second housing while being compressed and deformed therebetween, the three-dimensional shape defines voids in the thickness direction between the outer peripheral flange portion and the first housing.
Abstract:
Separator and hydraulic accumulator having such a separator. A separator, in particular for a hydraulic accumulator, such as a bellows accumulator, which is produced by a 3D printing process, consisting of one single diaphragm, which, when viewed in cross section, is deflected in an arcuate shape to form a multitude of bellows pleats at deflection points, which delimit the bellows pleats on the outside and the inside, and in that, to obtain an isotensoid or essentially isotensoid stress profile in the diaphragm, the notional extensions of the diaphragm surfaces adjacent to each deflection point form an acute angle with each other, at least in an initial state.
Abstract:
Disclosed is a diaphragm having a flexible film portion and an outer peripheral flange portion integrally provided on the peripheral edge of the film portion, said outer peripheral flange portion being provided between and held by a first housing and a second housing, wherein the film portion is prevented from rising upward when the diaphragm is attached to the housings. The outer peripheral flange portion has a first pressed surface which is one surface of the diaphragm in the thickness direction and which is in close contact with the first housing, and a three-dimensional shape composed of a projected portion or a recessed portion, on the first pressed surface. When the outer peripheral flange portion is attached to the first housing and the second housing while being compressed and deformed therebetween, the three-dimensional shape defines voids in the thickness direction between the outer peripheral flange portion and the first housing.
Abstract:
A steering damper system and method of regulating the fluid pressure of such a system are provided. The system can comprise a piston rod, a cylinder, a passage, and a damper portion. The damper portion can comprise a damper cavity, an outer piston, an inner piston, and a biasing component. The damper cavity can be in fluid communication with the passage. The outer piston can be slidably disposed in the damper cavity and define a chamber and a duct that is in fluid communication with the chamber and the passage. The inner piston can be slidably disposed in the chamber of the outer piston. The biasing component can exert an axial biasing force against the inner piston for regulating the pressure of fluid disposed in the system passing intermediate the passage, the damper cavity, and the chamber of the outer piston.