Abstract:
A broadband area-division beamsplitter that includes a pair of abutting triangular prisms (51 and 53) providing two surfaces that are in optical contact in certain areas and are out of optical contact in other areas. One prism surface (57) is substantially planar while adjoining surface (55) of the other prism has alternating protrusions and depressions. The two surfaces are oriented on a diagonal so that light incident through one of the other prism faces is incident on the adjoining surfaces at an angle larger than the critical angle, providing total internal reflection at the out-of-contact gap regions. The protrusions and depressions on the one prism surface may be in the form of a corrugation (Fig. 4) or a checkerboard (Fig. 5) or some other patterns.
Abstract:
Kamera mit einer matrixförmigen Anordnung von Detektorflächen (5.1) eines Detektorarrays (5) zur Erzeugung eines pixelbasierten Bildes und einem Spektrometer (4) mit einer Sensorfläche (4.1), die wenigstens der Position einer Detektorfläche (5.1) des Detektorarrays (5) und damit einem Pixel des Bildes und maximal der Position einer zusammenhängenden Gruppe von Detektorflächen (5.1), die kleiner als das Detektorarray (5) ist, und damit einer zusammenhängenden Gruppe von Pixeln des Bildes zugeordnet werden kann, womit ein mit dem Spektrometer (4) erzeugbares Spektrum einem Bildausschnitt des Bildes zugeordnet werden kann.
Abstract:
An apparatus comprises a coherent source (103) radiating coherent light to a sample, an excitation source (101) radiating excitation light to the sample, a scanning unit (102) controlling at least the radiated location and/or radiated shape of the excitation light on the sample, a signal separation unit (106) dividing a mixed signal from the sample into a coherent signal and spectroscopic signal, at least one detector (109,112) measuring the spectroscopic signal and coherent signal, at least one processing unit (110, 113) converting the spectroscopic signal into spectroscopic data and converting the coherent signal into a coherent image, and a feedback unit (118) controlling the scanning unit (102) based on the coherent image.
Abstract:
There is described a device (1) for offline inspection and color measurement of printed sheets for the production of banknotes and like printed securities, comprising (i) a console (10) having a supporting surface (10a) for supporting a sample printed sheet (S), (ii) a multipurpose measuring apparatus (20), which multipurpose measuring apparatus (20) comprises multiple sensors (22, 23) including at least one camera (22) for taking images of selected portions of the sample printed sheet (S) and a color measurement sensor (23) for performing spectrophotometric, colorimetric, and/or densitometric measurements at selected locations on the sample printed sheet (S), (iii) a display (30) for displaying the images taken by the camera (22) and the measurements performed by the color measurement sensor (23), and (iv) a control and processing unit (40) coupled to the multipurpose measuring apparatus (20) and the display (30). The device (1) comprises a moveable sensor beam (200) housing the multipurpose measuring apparatus (20), which moveable sensor beam (200) is displaceable along an x-axis over the supporting surface (10a) of the console (10) and over the entire surface of the sample printed sheet (S) located on the supporting surface (10a), the multiple sensors (22, 23) being mounted on a common sensor head (21) which is displaceable within the moveable sensor beam (200) along a y-axis so that the multipurpose measuring apparatus (20) can selectively take images of selected portions of the sample printed sheet (S) by means of the camera (22) or perform measurements at selected locations on the sample printed sheet (S) by means of the color measurement sensor (23). The control and processing unit (40) is configured to control displacement of the moveable sensor beam (200) along the x-axis and of the sensor head (21) along the y-axis.
Abstract:
본 발명은 비선형광학현미경을 이용한 혈관 내 지질의 병리적 변화 진단 시스템에 관한 것으로, 보다 상세하게는 비선형광학현미경을 이용하여 혈관을 어떠한 표지나 파괴없이 혈관 내벽에 비정상적으로 침착된 미세지질을 이미지화함과 동시에 이미징된 지질의 성분을 분석하여 혈관의 미세한 병리학적 변화를 진단함으로써 지질 관련 질병의 진행 단계를 판단할 수 있는 비선형광학현미경을 이용한 혈관 내 지질의 병리적 변화 진단 시스템에 관한 것이다.
Abstract:
In one implementation, a spectral microscope may comprise a substrate with a planar lens, the planar lens including a phase profile including an axial focus and an oblique focus, a light source to excite a signal of a particle among a plurality of particles, and a detector to receive light generated from the light source from the axial focus of the planar lens and a spectral color component of the excited signal of the particle from the oblique focus of the planar lens.
Abstract:
The present disclosure provides, among other things, an imaging system and method for providing anatomical guidance in a diagnostic or therapeutic procedure. Also disclosed are a system and method for providing anatomical guidance in an ex vivo diagnostic procedures. Aspects and embodiments include devices and methods for an imaging system using integrated bright-field imaging, near-infrared imaging, and Raman imaging and/or fluorescence imaging for evaluating target tissues as described herein in real-time combination for application with a whole body imaging system, an automated pathology system, a minimally invasive system, a computed tomography / magnetic resonance (CT/MR) integrated system, and the like.