Abstract:
PROBLEM TO BE SOLVED: To provide an electron gun capable of working at high angular current density suitable for use such as in an electronic photolithography device. SOLUTION: The electron consists of an electron emission cathode, a control electrode and an extraction electrode, of which the electron emission cathode is composed of rare earth hexaboride compound and the tip of the electron emission cathode activate the electron gun arranged between the control electrode and the extraction electrode under temperature limit area.
Abstract:
PURPOSE:To uniform and stable thermions by using a zirconium carbide whisker or a whisker composed primarily of zirconium cabide. CONSTITUTION:A single crystal needle-like hot-cathode has an electron-radiating material composed of zirconium carbide whisker or a zirconium carbide-dominated zirconium whisker, having regular quadranglar, regular hexagonal-columnar, or regular octagonal-columnar form. The zirconium carbide-dominated whisker contains at least one selected from titanium, hafnium, niobium, and tantalum.
Abstract:
Oxides of lanthanide metals are used to create stable surfaces for use in laser desorption ionization mass spectrometry. The disclosed lanthanide metal oxide surfaces are used to identify and characterize fatty acids from microorganism allowing profiling of the microorganism to the strain level, including antibiotic resistance. Cerium oxide, CeO2, was used to create a stable surface for obtaining fatty acid profiles of bacterial pathogens. Cross validation of results obtained using the disclosed methods, systems, and surfaces, demonstrated greater than 95% accuracy that did not suffer long-term degradation. Bacteria were identified by the disclosed methods, systems, and surfaces with greater than 98% at the species level and 96% at the strain level. Comparisons with existing technologies demonstrate that the presently disclosed methods, systems, and surfaces provide for surprisingly enhanced accuracy and reliability in profiling and identification.
Abstract:
An electron emission apparatus, an electron gun, and a method of fabrication of the electron gun are provided. The electron gun includes a cathode, a Wehnelt, and an anode. The cathode is configured to provide an electron beam. The Wehnelt has a bore. The bore is configured to pass the electron beam. The anode is disposed proximate to the cathode. The diameter of the bore of the Wehnelt and the offset between the Wehnelt and the cathode satisfy a predetermined dimensional relationship. The predetermined dimensional relationship is at least a function of a diameter of the bore of the anode and a distance between the Wehnelt and the anode.
Abstract:
A thermionic cathode of an embodiment includes a carbon coating applied to an outer surface of the side, the carbon coating comprising a contiguous extended portion surrounding the upper section and spaced apart from said upper section by a gap having 1 μm or more and 10 μm or less in width and having a difference of 1 μm or less in the width between a maximum value and a minimum value in a periphery of the electron emitting surface.
Abstract:
An electron source is made from mixed-metal carbide materials of high refractory nature. Producing field-enhanced thermionic emission, i.e., thermal-field or extended Schottky emission, from these materials entails the use of a certain low work function crystallographic direction, such as, for example, (100), (210), and (310). These materials do not naturally facet because of their refractory nature. The disclosed electron source made from transition metal carbide material is especially useful when installed in a scanning electron microscope (SEM) performing advanced imaging applications that require a high brightness, high beam current source.
Abstract:
An electron gun cathode (104) is column shaped, and emits electrons by being heated. A holder (103), which covers the bottom and sides of the electron gun cathode, has electrical conductivity and holds the electron gun cathode, and is composed of a material that does not easily react with the electron gun cathode when in a heated state, is provided. The tip of the electron gun cathode (104) protrudes from the holder (103) so as to be exposed, and electrons are emitted from the tip toward the front by applying an electric field to the tip.