Abstract:
An electron source is made from mixed-metal carbide materials of high refractory nature. Producing field-enhanced thermionic emission, i.e., thermal-field or extended Schottky emission, from these materials entails the use of a certain low work function crystallographic direction, such as, for example, (100), (210), and (310). These materials do not naturally facet because of their refractory nature. The disclosed electron source made from transition metal carbide material is especially useful when installed in a scanning electron microscope (SEM) performing advanced imaging applications that require a high brightness, high beam current source.
Abstract:
A cold cathode field emission electron source capable of emission at levels comparable to thermal sources is described. Emission in excess of 6 A/cm2 at 7.5 V/μm is demonstrated in a macroscopic emitter array. The emitter is comprised of a monolithic and rigid porous semiconductor nanostructure with uniformly distributed emission sites, and is fabricated through a room temperature process which allows for control of emission properties. These electron sources can be used in a wide range of applications, including microwave electronics and x-ray imaging for medicine and security.
Abstract translation:描述了能够以与热源相当的水平发射的冷阴极场致发射电子源。 在宏观发射极阵列中证明了在7.5V /μm下超过6A / cm 2的发射。 发射极由具有均匀分布的发射部位的单片和刚性多孔半导体纳米结构组成,并通过允许控制发射特性的室温工艺制造。 这些电子源可用于广泛的应用,包括微波电子学和医学和安全性的x射线成像。
Abstract:
The present invention relates to a field emission cathode, comprising an at least partly electrically conductive base structure, and a plurality of electrically conductive micrometer sized sections spatially distributed at the base structure, wherein at least a portion of the plurality of micrometer sized sections each are provided with a plurality of electrically conductive nanostructures. Advantages of the invention include lower power consumption as well as an increase in light output of e.g. a field emission lighting arrangement comprising the field emission cathode.