Abstract:
Described and disclosed are methods for determining, predicting, diagnosing, treating, and monitoring lung diseases, including bronchiolitis obliterans syndrome and acute cellular rejection in a lung transplant recipient by measuring chemokine levels in bronchoalveolar lavage (BAL) samples. The chemokine CXCL10 is measured in combination with at least one analyte selected from the group consisting of IL1RA, CXCL11, MCP-1, CXCL9, RANTES, IL-13, IL-17, IL-22, fractalkine, and eotaxin; and/or biomarkers. The present teachings also relate to methods, treatment decisions and kits for detecting and monitoring onset of lung transplant rejection in advance of clinically recognized symptoms.
Abstract:
The present application describes compositions, methods and kits for rapid detection and identification of various microorganisms using inducible RNA. Methods for rapidly detecting microorganisms by detecting expression of inducible RNA of target genes following induction of a target gene using an inducer are described. Some embodiments describe methods and workflows for rapidly detecting microbes such as, but not limited to, Salmonella spp, Listeria spp. and Vibrio spp. Compositions and kits comprise primer nucleic acid sequences having hybridization specificity for priming amplification of genes of microorganisms (or gene fragments) that are responsive to one or more RNA-inducing agents. In some embodiments, kits and compositions further comprise probe nucleic acid sequences having hybridization specificity for genes responsive to RNA-inducing agents or fragments thereof.
Abstract:
The described embodiments may provide a chemical detection circuit with an improved signal-to-noise ration. The chemical detection circuit may include a current source, a chemical detection pixel, an amplifier and a capacitor. The chemical detection pixel may comprise a chemical-sensitive transistor that may have a first and second terminals and a row-select switch coupled between the current source and chemically- sensitive transistor. The amplifier may have a first input and a second input, with the first input coupled to an output of the chemically-sensitive transistor via a switch and the second input coupled to an offset voltage line. The capacitor may be coupled between an output of the amplifier and the first input of the amplifier. The capacitor and amplifier may form an integrator and may be shared by a column of chemical detection pixels.
Abstract:
In some embodiments, the present inventions relates generally to compositions, methods and kits for use in discriminating between different methylated and/or unmethylated nucleic acid loci. In certain embodiments, the inventions provides for detecting or quantitating undifferentiated embryonic stem cells in a population of differentiated cells. The invention is also useful for discriminating between fetal versus maternal cells, or healthy versus infected cells, or normal versus cancerous cells, or detecting reduction in viral load or measuring therapeutic efficiency in a patient, and more.
Abstract:
Disclosed are rare short tandem repeat (STR) alleles within the D10S1248 and D12S391 loci in humans. Provided are representative allelic ladders for each locus, methods and assays using these alleles and kits containing allelic ladders comprising these alleles for accurate genotyping and identification of a wide range of individuals.
Abstract:
Systems and methods are used to display data obtained from a qPCR instrument. Each of two or more samples is probed with a first labeling probe and a second labeling probe. A first data set is received from a qPCR instrument at a first cycle number that includes for each sample a first labeling probe intensity, and a second labeling probe intensity. A second data set is received at a second cycle number that includes for each sample a first labeling probe intensity and a second labeling probe intensity. A first plot of first labeling probe intensity as a function of second labeling probe intensity is created using the first data set. A second plot of first labeling probe intensity as a function of second labeling probe intensity is created using the second data set. The first plot and the second plot are displayed in response to user defined input to provide dynamic and real-time analysis of genotyping data.
Abstract:
A flow cytometer includes a capillary having a sample channel; at least one vibration producing transducer coupled to the capillary, the at least one vibration producing transducer being configured to produce an acoustic signal inducing acoustic radiation pressure within the sample channel to acoustically concentrate particles flowing within a fluid sample stream in the sample channel; and an interrogation source having a violet laser and a blue laser, the violet and blue lasers being configured to interact with at least some of the acoustically concentrated particles to produce an output signal.
Abstract:
A method of sequencing a plurality of template nucleotide sequences includes immobilizing the plurality of template nucleotide sequences on a substrate. A first subset of the plurality of template nucleotide sequences is immobilized in a first field of view and a second subset of the plurality of template nucleotide sequences is immobilized in a second field of view. The first and second subsets are hybridized to a caged primer. The caged primer includes a caging group. The method further includes lysing the caging group from the caged primer in the first field of view and observing the first field of view to detect sequencing of the first subset of the plurality of template nucleotide sequences.
Abstract:
The present teachings disclose various embodiments of a thermal block assembly having low thermal non-uniformity throughout the thermal block assembly. Accordingly, various embodiments of thermal block assemblies having such low thermal non-uniformity provide for desired performance of bioanalysis instrumentation utilizing such thermal block assemblies.
Abstract:
A packaging system for transporting vials containing biological samples may comprise a first tray defining at least one first tray cavity; and a second tray defining at least one second tray cavity and configured to mate with the first tray. The packaging system may further comprise at least one first tray cavity and at least one second tray cavity, wherein the at least one first tray cavity and the at least one second tray cavity are configured to securely hold respective vials for transport, and to restrain caps on the respective vials during transport, wherein the at least one first tray cavity and the at least one second tray cavity oppose each other when the first tray and the second tray are mated together. The packaging system may also be configured to permit barcode scanning of vials held within the first tray cavity and the second tray ca