Abstract:
The use of doped silicon nanoparticle inks and other liquid dopant sources can provide suitable dopant sources for driving dopant elements into a crystalline silicon substrate using a thermal process if a suitable cap is provided. Suitable caps include, for example, a capping slab, a cover that may or may not rest on the surface of the substrate and a cover layer. Desirable dopant profiled can be achieved. The doped nanoparticles can be delivered using a silicon ink. The residual silicon ink can be removed after the dopant drive-in or at least partially densified into a silicon material that is incorporated into the product device. The silicon doping is suitable for the introduction of dopants into crystalline silicon for the formation of solar cells.
Abstract:
Laser pyrolysis reactor designs and corresponding reactant inlet nozzles are described to provide desirable particle quenching that is particularly suitable for the synthesis of elemental silicon particles. In particular, the nozzles can have a design to encourage nucleation and quenching with inert gas based on a significant flow of inert gas surrounding the reactant precursor flow and with a large inert entrainnient flow effectively surrounding the reactant precursor and quench gas flows. Improved silicon nanoparticle inks are described that has silicon nanoparticles without any surface modification with organic compounds. The silicon ink properties can be engineered for particular printing applications, such as inkjet printing, gravure printing or screen printing. Appropriate processing methods are described to provide flexibility for ink designs without surface modifying the silicon nanoparticles.
Abstract:
Photovoltaic elements can be formed by in-motion processing of a silicon ribbon. In some embodiments, only a single surface of a silicon ribbon is processed in-motion. In other embodiments both surfaces of a silicon ribbon is processed in-motion. In-motion processing can include, but is not limited to, formation of patterned or uniform doped regions within or along the silicon ribbon as well as the formation of patterned or uniform dielectric layers and/or electrically conductive elements on the silicon ribbon. After performing in-motion processing, additional processing steps can be performed after the ribbon is cut into portions. Furthermore, post-cut processing can include, but is not limited to, the formation of solar cells, photovoltaic modules, and solar panels.
Abstract:
Layered metal structures are patterned to form a surface with some locations having an alloy along the top surface at some locations and the original top metal layer at other locations along the surface. The alloy and original top metal layer can be selected to have differential etching properties such that the pattern of the alloy or original metal can be selectively etched to form a patterned metal interconnect. In general, the patterning is performed by localized heating that drives formation of the alloy at the heated locations. The metal patterning can be useful for solar cell applications as well as for electronics applications, such as display applications.
Abstract:
ZMR apparatuses provide for controlled temperature flow through the system to reduce energy consumption while providing for desired crystal growth properties. The apparatus can include a cooling system to specifically remove a desired amount of heat from a melted film to facilitate crystallization. Furthermore, the apparatus can have heated walls to create a background temperature within the chamber that reduces energy use through the reduction or elimination of cooling for the chamber walls. The apparatuses and corresponding methods can be used with inorganic films directly or indirectly associated with a porous release layer that provides thermal insulation with respect to an underlying substrate. If the recrystallized film is removed from the substrate, the substrates can be reused. The methods can be used for large area silicon films with thicknesses from 2 microns to 100 microns, which are suitable for photovoltaic applications as well as electronics applications.
Abstract:
Functional composite materials comprise elemental inorganic particles within an organic matrix. The elemental inorganic materials generally comprise elemental metal, elemental metalloid, alloys thereof, or mixtures thereof. In alternative or additional embodiments, the inorganic particles can comprise a metal oxide, a metalloid oxide, a combination thereof or a mixture thereof. The inorganic particles can have an average primary particle size of no more than abut 250 nm and a secondary particle size in a dispersion when blended with the organic matrix of no more than about 2 microns. The particles can be substantially unagglomerated within the composite. The organic binder can be a functional polymer such as a semiconducting polymer. The inorganic particles can be surface modified, such as with a moiety having an aromatic functional group for desirable interactions with a semiconducting polymer. Appropriate solution based methods can be used for forming the composite from dispersions of the particles. The composites can be processed into products, such as printed electronics devices.
Abstract:
Successful dispersion approaches are described for the formation of dispersion of dry powders of inorganic particles. In some embodiments, it is desirable to form the dispersion in two processing steps in which the particles are surface modified in the second processing step. Composites can be formed using the well dispersed particles to form improved inorganic particle-polymer composites. These composites are suitable for optical applications and for forming transparent films, which can have a relatively high index or refraction. In some embodiments, water can be used to alter the surface chemistry of metal oxide particles.
Abstract:
Hollow silica nanoparticles can have well defined non-porous shells with low shell fragmentation and good dispersability. These well defined hollow particles can be formed through the controlled oxidation of silicon nanoparticles in an organic solvent. The hollow nanoparticles can have a submicron secondary particle sizes. The hollow silica nanoparticles can be incorporated into polymer composites, such as low index-of- refraction composites, for appropriate applications.
Abstract:
Improved reaction chamber designs are described that provide for improved control over the flow within the reaction chamber (100). The reaction chamber (100) contains reactions for particle production from a flowing reactant stream. Improved reactant delivery nozzles (116) are described that are useful for the delivery of gas/vapor reactants and/or aerosol reactants. Improved nozzle designs can result in more uniform reactant flow. Suitable reactors can comprise an electromagnetic radiation source (134) that projects through the reactor to drive the reaction at an electromagnetic radiation reaction zone. The improved nozzle features are suitable for reactors for particle collection and/or for coating of substrates within the reaction chamber (100).
Abstract:
Improvements to chemical reaction systems (100) provide for the production of commercial quantities of chemical products, such as chemical powders. The improved chemical reaction systems (100) can accomodate a large reactant flux for the production of significant amounts of product. Preferred reaction systems (100) are based on laser pyrolysis. Features of the system (100) provide for the production of highly uniform product particles.