Abstract:
본 발명은 석탄화력발전소의 연소 배가스와 같은 이산화탄소를 포함하는 혼합기체로부터 이산화탄소를 흡수하고, 이산화탄소를 많이 포함하는 중탄산염 슬러리를 분리하여 고압으로 재생하는 공정 및 장치에서, 중탄산염 슬러리 생성 수율을 높여 이산화탄소 흡수용액의 재생 및 냉각과 가열에 소요되는 현열, 잠열 및 재생에너지 비용을 감소시킬 수 있는 반용매를 포함하는 이산화탄소 흡수용 조성물 및 이를 사용하는 이산화탄소 흡수 및 재생 방법 및 이에 사용되는 장치에 관한 것이다.
Abstract:
The present invention relates to a control method for meeting a setting standard of an ammonia slip of exhaust gas generated from a dual or bi-fuel engine using ammonia as fuel. Injection of ammonia is restricted until a predetermined temperature condition of a cooling water and a temperature condition of the exhaust gas are achieved. Therefore, the ammonia (NH3) is not excessively discharged in initial starting time, and only other fuel, such as gasoline, is injected while injection of ammonia fuel is restricted in order to activate an ammonia oxidation catalyst. Therefore, it is possible to prevent environmental pollution and a bad influence on a human body generated in a past when ammonia slipped.
Abstract:
The present invention is a composition for absorbing carbon dioxide with an improved performance used for absorbing carbon dioxide from combustion exhaust gas of a coal-fired power plant including carbon dioxide; and relates to a composition for absorbing carbon dioxide capable of preventing ammonia from being evaporated from ammonia water and improving the speed of absorbing carbon dioxide, and to a method and an apparatus for absorbing carbon dioxide using the same.
Abstract:
Disclosed is a plastic sheet type photobioreactor having a movement limit member of a reaction sheet. The plastic sheet type photobioreactor having a movement limit member of a reaction sheet comprises: the reaction sheet that is formed of a plastic material, and includes a culturing space for storing photo-organisms and culture liquid and multiple penetration units formed when the front and rear surfaces are attached; a carbon dioxide supplying unit which supplies carbon dioxide into the reaction sheet; an insertion and discharging unit which discharges oxygen generated from photosynthesis of the photo-organisms using the carbon dioxide supplied to the inside of the reaction sheet; and the movement limit member which limits the movement of a fixing stand by connecting the fixing stand, which is fitted to a fixing stand insertion unit located on the lower part of the reaction sheet, to a fixing device which is fixated to the ground.
Abstract:
Disclosed is a vinyl sheet type photobioreactor having a light penetrating part. The vinyl sheet type photobioreactor having the light penetrating part comprises: a reaction sheet of a vinyl material having a culturing space for storing a photobio-organism and a culture inside, and having multiple light penetrating parts of which the density increases toward one direction by having the front side and the back side attached; a carbon dioxide supplying part supplying carbon dioxide to the inside of the reaction sheet; and an entry and exit part discharging oxygen produced by photosynthesis of the photobio-organism from the carbon dioxide supplied to the inside of the reaction sheet.
Abstract:
The present invention relates to a cooling duct, which is a duct having a flow fan for the flow of a gas and having a hollow fiber membrane so as to remove water from the gas with no or low power and then cool the gas by humidifying the gas using water at low temperatures. A cooling duct according to the present invention comprises: a dehumidifying part removing water from a fed gas; and a humidifying part placed at the rear end of the dehumidifying part and feeding water to the gas from which the water has been removed, wherein the dehumidifying part includes: an inlet part into which the gas is fed; an outlet part from which the gas is discharged; a flow fan placed between the inlet part and the outlet part and allowing the gas to flow; a water remover installed at the rear end of the flow fan and having a hollow fiber membrane capable of selectively absorbing the water from the flowing gas; and a gas-liquid separator connected to the water remover, wherein the gas-liquid separator connected to the inlet part, in which pressure is relatively lower than pressure in the outlet part, so that the hollow fiber membrane is capable of absorbing and separating the water.
Abstract:
본 발명은 수용액 내에 낮은 농도로 존재하는 미세조류 바이오매스를 회수하는 방법에 관한 것으로, 더욱 상세하게는 아민계 화합물이 결합된 자성 나노입자를 이용하여 미세조류 바이오매스를 응집시키고, 자력을 사용하여 응집된 미세조류 바이오매스와 나노입자를 회수하고, 미세조류 바이오매스와 나노입자를 다시 분리한 다음 미세조류 바이오매스는 후속 공정에서 처리하고, 나노입자는 응집에 재사용하는 아민-자성 나노입자를 이용한 미세조류 회수 방법에 관한 것이다.
Abstract:
The present invention relates to a method for collecting microalgae biomass existing in an aqueous solution with low concentration and, more specifically, to a method for collecting microalgae using amine-magnetic nanoparticles which aggregates the microalgae biomass using the amine based compound-grafted magnetic nanoparticles, collects the microalgae biomass and the nanoparticles which are aggregated using magnetic force, processes the microalgae biomass in a following process after separating the microalgae biomass from the nanoparticles, and reuses the nanoparticles for aggregation. [Reference numerals] (AA,BB) Magnet
Abstract:
본 발명은 이산화탄소 고정능이 우수한 클로렐라 속( Chlorella sp.) N113(KCTC 11992BP) 균주와 상기 균주를 이용한 이산화탄소의 고정화방법, 상기 균주를 배양하는 단계를 포함하는 지질을 생산하는 방법, 상기 방법으로 생산된 지질 및 상기 지질을 이용하여 바이오디젤을 제조하는 방법에 관한 것이다.
Abstract:
PURPOSE: A method for separating sulfones from high boiling fractions containing sulfones is provided to reduce equipment cost and process operation cost compared to hydrosulfurization method. CONSTITUTION: An extraction solvent is supplied to a high boiling fraction containing sulfones to remove unreacted oxidant and oxidation reaction by-product (S1). The extraction solvent is removed by distillation (S2). Sulfones in the high boiling fraction containing sulfones is absorbed and separated by using absorbent (S3). The absorbent is silica which is acidified. The extraction solvent is methanol or acetonitrile. The high boiling fraction containing sulfones and the extraction solvent are used with weight ration of 1:1-4:1.The high boiling fraction is Residue Hydro-DeSulfurization (RHDS) diesel whose boiling point is 180-400°C. [Reference numerals] (AA) Sulfur diesel containing sulfur oxides 180-400°C; (BB) Extraction (S1 step); (CC) Extraction solvent removal (S2 step); (DD) Adsorption (S3 step); (EE) Ultra low sulfur diesel having a high boiling fraction