Abstract:
An apparatus includes a die with through-silicon vias and radio frequency integrated circuit capabilities and it is vertically integrated with a phased-array antenna substrate. The through-silicon via and a radio frequency integrated circuit is coupled to a plurality of antenna elements disposed on the phased-array antenna substrate where each of the plurality of antenna elements is coupled to the through-silicon vias and radio frequency integrated circuit through a plurality of through-silicon vias. A process of assembling the through-silicon vias and radio frequency integrated circuit to the phased-array antenna substrate includes testing the apparatus.
Abstract:
Functionality of front-end module radio frequency (RF) devices is divided between a hybrid system on chip (SoC) that includes a digital processor and an RF integrated circuit device (DP-RFIC device), and a package substrate for the hybrid device. Methods of assembling include forming inductors and transformers integral to the package substrate and mounting the DP-RFIC device in proximity to the inductors and transformers.
Abstract:
Embodiments disclosed herein include electronic packages with a core that includes an optical waveguide and methods of forming such electronic packages. In an embodiment, a package substrate comprises a core, and a photonics die embedded in the core. In an embodiment, the electronic package further comprises an optical waveguide embedded in the core. In an embodiment, the optical waveguide optically couples the photonics die to an edge of the core.
Abstract:
Embodiments described herein may be related to apparatuses, processes, and techniques related to glass interposers or substrates that may be created using a glass etching process to enable highly integrated modules. Planar structures, which may be vertical planar structures, created within the glass interposer may be used to provide shielding for conductive vias in the glass interposer, to increase the signal density within the glass substrate and to reduce cross talk. Other embodiments may be described and/or claimed.
Abstract:
Embodiments disclosed herein comprise package substrates and methods of forming package substrates. In an embodiment, a package substrate comprises a core substrate. A hole is disposed into the core substrate, and a via is disposed in the hole. In an embodiment, the via completely fills the hole. In an embodiment, a method of forming a package substrate comprises exposing a region of a core substrate with a laser. In an embodiment, the laser changes the morphology of the exposed region. The method may further comprise etching the core substrate, where the exposed region etches at a faster rate than the remainder of the core substrate to form a hole in the core substrate. The method may further comprise disposing a via in the hole.
Abstract:
In various aspects, a device-to-device communication system is provided including a first device and a second device. Each of the first device and the second device includes an antenna, a radio frequency frond-end circuit, and a baseband circuit. Each of the first device and the second device are at least one of a chiplet or a package. The device-to-device communication system further includes a cover structure housing the first device and the second device. Each of the first device and the second device are at least one of a chiplet or a package. The device-to-device communication system further includes a radio frequency signal interface wirelessly communicatively coupling the first device and the second device. The radio frequency signal interface includes the first antenna and the second antenna.
Abstract:
RF front end systems or modules with an acoustic wave resonator (AWR) on an interposer substrate are described. In an example, an integrated system includes an active die, the active die comprising a semiconductor substrate having a plurality of active circuits therein. An interposer is also included, the interposer comprising an acoustic wave resonator (AWR). A seal frame couples the active die to the interposer, the seal frame surrounding the acoustic wave resonator and hermetically sealing the acoustic wave resonator between the active die and the interposer.
Abstract:
RF front end systems, and more particularly an RF front end system with an integrated and hermetically sealed acoustic wave resonator (AWR), are described. In an example, a system die includes a semiconductor substrate having a first side and a second side opposite the first side. An interconnect structure is on the first side of the semiconductor substrate, the interconnect structure comprising a plurality of metal layers and a plurality of dielectric layers. An acoustic wave resonator is in the interconnect structure. An inductor is in the interconnect structure. An active device area is in the first side of the semiconductor substrate. A cap is attached to the interconnect structure by a seal frame, the cap over the acoustic wave resonator and hermetically sealing the acoustic wave resonator.
Abstract:
Packaged RF front end systems including a hybrid filter and an active circuit in a single package are described. In an example, a package includes an active die comprising an acoustic wave resonator. A package substrate is electrically coupled to the active die. A seal frame surrounds the acoustic wave resonator and is attached to the active die and to the package substrate, the seal frame hermetically sealing the acoustic wave resonator in a cavity between the active die and the package substrate.
Abstract:
Semiconductor packages having a die electrically connected to an antenna by a coaxial interconnect are described. In an example, a semiconductor package includes a molded layer between a first antenna patch and a second antenna patch of the antenna. The first patch may be electrically connected to the coaxial interconnect, and the second patch may be mounted on the molded layer. The molded layer may be formed from a molding compound, and may have a stiffness to resist warpage during fabrication and use of the semiconductor package.