Abstract:
A method of manufacturing a semiconductor device includes forming at least one sacrificial layer on a substrate during a complementary metal-oxide-semiconductor (CMOS) process. An absorber layer is deposited on top of the at least one sacrificial layer. A portion of the at least one sacrificial layer beneath the absorber layer is removed to form a gap over which a portion of the absorber layer is suspended. The sacrificial layer can be an oxide of the CMOS process with the oxide being removed to form the gap using a selective hydrofluoric acid vapor dry etch release process. The sacrificial layer can also be a polymer layer with the polymer layer being removed to form the gap using an O2 plasma etching process.
Abstract:
An infrared camera architecture includes, for an embodiment, an infrared detector, a substrate, a plurality of electrical components coupled to the substrate, and a pedestal made of a thermally conductive material and having a leg coupled to the substrate. The infrared detector is supported by and thermally coupled to the pedestal, with the pedestal thermally isolating the infrared detector from the plurality of electrical components.
Abstract:
According to one aspect, the invention relates to a microbolometer array for thermal detection of light radiation in a given spectral band, comprising a supporting substrate and an array of microbolometers (300) of given dimensions, arranged in an array. Each of said microbolometers comprises a membrane (301) suspended above said supporting substrate, said membrane consisting of an element (305) for absorbing the incident radiation and a thermometric element (304) in thermal contact with the absorber, electrically insulated from said absorber element. The absorber element comprises at least one first metal/insulator/metal (MIM) structure comprising a multilayer of three superposed films of submicron-order thickness i.e. a first metallic film (311), a dielectric film (310), and a second metallic film (309), said MIM structure being able to have a resonant absorption of said incident radiation at at least one wavelength in said spectral band. The area of the microbolometer pixel covered by said membrane (301) is less than or equal to half of the total area of the microbolometer pixel.
Abstract:
Die Erfindung betrifft eine Vorrichtung zur Detektion von Wärmestrahlung, aufweisend mindestens eine Membran, auf der mindestens ein thermisches Detektorelement zur Umwandlung der Wärmestrahlung in ein elektrisches Signal angeordnet ist, und mindestens einen Schaltungsträger zum Tragen der Membran und zum Tragen mindestens einer Ausleseschaltung zum Auslesen des elektrischen Signals, wobei das Detektorelement und die Ausleseschaltung über eine elektrische Durchkontaktierung durch die Membran hindurch elektrisch miteinander verbunden sind. Daneben wird ein Verfahren zum Herstellen der Vorrichtung mit folgenden Verfahrensschritten angegeben: a) Bereitstellen der Membran mit dem Detektorelement und mindestens einer elektrischen Durchkontaktierung und Bereitstellen des Schaltungsträgers und b) Zusammenbringen der Membran und des Schaltungsträgers derart, dass das Detektorelement und die Ausleseschaltung über eine elektrische Durchkontaktierung durch die Membran hindurch elektrisch miteinander verbunden sind. Das Herstellen erfolgt vorzugsweise auf Wafer-Ebene: Es werden funktionalisierte Silizium-Substrate übereinander gestapelt, fest miteinander verbunden und anschließend vereinzelt. Vorzugsweise sind die Detektorelemente pyroelektrische Detektorelemente. Verwendung findet die Vorrichtung in Bewegungsmeldern, Präsenzmeldern und Wärmebildkameras.
Abstract:
A conduction structure for infrared microbolometer sensors and a method for sensing electromagnetic radiation may be provided. The microbolometer may include a first conductor layer (64) and a second conductor layer (68). The microbolometer further may include a bolometer layer (62) between the first conductor layer and the second conductor layer.
Abstract:
A thermal infrared detector comprising a dielectric pellicle (5) suspended over a cavity in a substrate (6), the pellicle supporting a detector element (1) comprising a heat sensitive semiconductor layer (3) between a pair of thin film metallic contacts (2, 4), these being deposited on the pellicle, the cavity being formed by etching and removal of the substrate material through holes or slots (8) in the surface of the substrate.
Abstract:
Various techniques are provided for implementing, operating, and manufacturing infrared imaging devices using integrated circuits. In one example, a system includes a focal plane array (FPA) integrated circuit comprising an array of infrared sensors adapted to image a scene, a plurality of active circuit components, a first metal layer disposed above and connected to the circuit components, a second metal layer disposed above the first metal layer and connected to the first metal layer, and a third metal layer disposed above the second metal layer and below the infrared sensors. The third metal layer is connected to the second metal layer and the infrared sensors. The first, second, and third metal layers are the only metal layers of the FPA between the infrared sensors and the circuit components. The first, second, and third metal layers are adapted to route signals between the circuit components and the infrared sensors.
Abstract:
According to one aspect, the invention relates to a microbolometer array for thermal detection of light radiation in a given spectral band, comprising a supporting substrate and an array of microbolometers (300) of given dimensions, arranged in an array. Each of said microbolometers comprises a membrane (301) suspended above said supporting substrate, said membrane consisting of an element (305) for absorbing the incident radiation and a thermometric element (304) in thermal contact with the absorber, electrically insulated from said absorber element. The absorber element comprises at least one first metal/insulator/metal (MIM) structure comprising a multilayer of three superposed films of submicron-order thickness i.e. a first metallic film (311), a dielectric film (310), and a second metallic film (309), said MIM structure being able to have a resonant absorption of said incident radiation at at least one wavelength in said spectral band. The area of the microbolometer pixel covered by said membrane (301) is less than or equal to half of the total area of the microbolometer pixel.
Abstract:
A bolometer type ultra-sensitive silicon sensor including a detector stage (14), an intermediate stage (16), and a heat bath stage (17). The detector stage, the intermediate stage and a portion of the heat bath stage are generally co-planar and are interconnected by I-beam bridges so as to permit mutually co-planar rotation. Mechanical and electrical coupling is improved between a micro-antenna and the detector stage by a two stage transformer assembly (L1-L2, L5-L6) coupled between the micro-antenna and a detector element of the detector stage.