Abstract:
Disclosed is an apparatus for optical emission spectroscopy which includes a light measuring unit measuring light in a process chamber performing a plasma process on a substrate, a light analyzing unit receiving light collected from the light measuring unit to analyze a plasma state, a control unit receiving an output signal of the light analyzing unit to process the output signal, and a light collecting controller disposed between the process chamber and the light measuring unit so as to be combined with the light measuring unit. The light collecting controller controls the light collected to the light measuring unit.
Abstract:
An apparatus consisting of stacked slab waveguides whose outputs are vertically staggered is disclosed. At the input to the stacked waveguides, the entrances to each slab lie in approximately the same vertical plane. A spot which is imaged onto the input will be transformed approximately to a set of staggered rectangles at the output, without substantial loss in brightness, which staggered rectangles can serve as a convenient input to a spectroscopic apparatus. A slit mask can be added to spatially filter the outputs so as to present the desired transverse width in the plane of the spectroscopic apparatus parallel to its dispersion.
Abstract:
An optical characteristic measuring apparatus and an optical characteristic measuring method of the invention are an optical characteristic measuring apparatus and method for obtaining a predetermined optical characteristic such as a color value or a total spectral radiation factor of a measurement object. A spectral intensity distribution of predetermined ambient light entering through a measurement opening is measured and stored prior to measurement of the optical characteristic. In measuring the optical characteristic, an optical characteristic in a condition that actually measured ambient light is used as an observation light source is obtained, with use of the stored spectral intensity distribution of ambient light.
Abstract:
The present disclosure provides for a system and method for detecting explosives and other materials in a sample scene. First interacted photons are produced from a target area wherein the first interacted photons are generated via solar radiation. The first interacted photons are assessed to thereby generate a SWIR hyperspectral image. The SWIR hyperspectral image is analyzed to identify an area of interest likely of comprising an explosive material. The area of interest is illuminated using laser light illumination to generate second interacted photons from the area of interest. These second interacted photons are assessed to determine whether it not an explosive material is present in the area of interest. The system and method may be configured in standoff, OTM, static and UGV configurations.
Abstract:
A novel approach for chemical imaging is disclosed. In one embodiment, the disclosure relates to a system for producing a spatially accurate wavelength-resolved image of a sample from photons scattered from the sample, comprising an optical lens; a first optical fiber bundle of M fibers; a second optical fiber bundle of N fibers; an optical fiber switch; and a charge coupled device, wherein the image comprises plural sub-images, and wherein each sub-image is formed from photons scattered from a predetermined two spatial dimension portion of the sample, and wherein the scattered photons forming each sub-image have a predetermined wavelength different from a predetermined wavelength of scattered photons forming the other sub-images, and wherein the scattered photons for each sub-image are collected substantially simultaneously.
Abstract:
A novel approach for chemical imaging is disclosed. In one embodiment, the disclosure relates to a system for producing a spatially accurate wavelength-resolved image of a sample from photons scattered from the sample, comprising an optical lens; a first optical fiber bundle of M fibers; a second optical fiber bundle of N fibers; an optical fiber switch; and a charge coupled device, wherein the image comprises plural sub-images, and wherein each sub-image is formed from photons scattered from a predetermined two spatial dimension portion of the sample, and wherein the scattered photons forming each sub-image have a predetermined wavelength different from a predetermined wavelength of scattered photons forming the other sub-images, and wherein the scattered photons for each sub-image are collected substantially simultaneously.
Abstract:
The disclosure relates generally to methods and apparatus for spectral calibration of a spectroscopic system which includes a fiber array spectral translator. One embodiment relates to a method for obtaining a first image of a known substance using a photon detector and a fiber array spectral translator having plural fibers, wherein the first image comprises at least one pixel; providing a second image of the substance wherein the second image comprises at least one pixel; comparing the first image with the second image; and adjusting at least one pixel of the first image based on the comparison of images to thereby obtain an adjusted image.
Abstract:
A spatial filter for an optical system, such as an optical spectrometer, collects and spatially filters light using a fiber bundle having a plurality of fibers disposed therein. At an input end of the fiber bundle, the fibers are typically packed tightly together to optimize the collection efficiency. At an output end, the fibers are spread out from the fiber bundle and arranged within a two-dimensional output area according to a two-dimensional pattern corresponding to a coded aperture function. As a result, the two-dimensional pattern of the output end spatially filters the light collected by the input end. Corresponding methods are also described.
Abstract:
Systems, methods, and apparatuses of low-coherence enhanced backscattering spectroscopy are described within this application. One embodiment includes providing incident light comprising at least one spectral component having low coherence, wherein the incident light is to be illuminated on a target object in vivo. An intensity of one or more of at least one spectral component and at least one angular component of backscattering angle of backscattered light is recorded, wherein the backscattered light is to be backscattered from illumination of the incident light on the target object and wherein the backscattering angle is an angle between incident light propagation direction and backscattered light propagation direction. The intensity of the at least one spectral component and the at least one backscattering angle of backscattered light is analyzed, to obtain one or more optical markers of the backscattered light, toward evaluating said properties.
Abstract:
A spatial filter for an optical system, such as an optical spectrometer, collects and spatially filters light using a fiber bundle having a plurality of fibers disposed therein. At an input end of the fiber bundle, the fibers are typically packed tightly together to optimize the collection efficiency. At an output end, the fibers are spread out from the fiber bundle and arranged within a two-dimensional output area according to a two-dimensional pattern corresponding to a coded aperture function. As a result, the two-dimensional pattern of the output end spatially filters the light collected by the input end. Corresponding methods are also described.