Abstract:
Systems and methods for EUV Light Source metrology are disclosed. In a first aspect, a system for measuring an EUV light source power output may include a photoelectron source material disposed along an EUV light pathway to expose the material and generate a quantity of photoelectrons. The system may further include a detector for detecting the photoelectrons and producing an output indicative of EUV power. In another aspect, a system for measuring an EUV light intensity may include a multi-layer mirror, e.g., Mo/Si, disposable along an EUV light pathway to expose the mirror and generate a photocurrent in the mirror. A current monitor may be connected to the mirror to measure the photocurrent and produce an output indicative of EUV power. In yet another aspect, an off-line EUV metrology system may include an instrument for measuring a light characteristic and MoSi 2 /Si multi layer mirror.
Abstract:
This invention relates to novel methods of producing flat and curved optical elements with laterally and depth graded multilayer thin films, in particular multilayers of extremely high precision, for use with soft and hard x-rays and neutrons and the optical elements achieved by these methods. In order to improve the performance of an optical element, errors in d spacing and curvature are isolated and subsequently compensated.
Abstract:
Conventional X-ray analysis devices usually operate on the Guinier, Seemann-Bohlin or Bragg-Brentano focussing principle. Here, the sample to be examined must meet certain geometrical requirements, and this is often impossible in practice. The object of the application is an analysis device fitted with a conventional X-ray tube (4) in which the sample is illuminated by a parallel monochromatic beam (7') and the deflected X-radiation (13) is detected as a parallel beam. The monochromator used is a parabolically curved multi-layer mirror ("graded-Bragg" structure (5)), the period of which changes over the length (1) of the reflector (5) in such a way that radiation of a given wavelength is always Bragg-reflected in the same direction regardless of the angle of incidence. Parallel-beam X-ray diffractometer, parallel-beam X-ray reflectometer.
Abstract:
QUE COMPRENDE: A) UNA FUENTE DE RAYOS X, B) UN MODULO OPTICO DE RAYOS X, COMPUESTO POR UN CONCENTRADOR DE RAYOS X DE DISPERSION DE ENERGIA Y UN SISTEMA DE DIAFRAGMA, C) UNA UNIDAD DE REPRESENTACION POR IMAGENES, Y D) UN DISPOSITIVO DE MEDICION PARA DETERMINAR LA DOSIS DE RADIACION. EL PROCEDIMIENTO CONSISTE EN: A) RETIRAR EL CONCENTRADOR DE RAYOS X, PARA LA REPRESENTACION POR IMAGENES, DE LA TRAYECTORIA DEL HAZ DE RAYOS E INTRODUCIRLO EN LA TRAYECTORIA DEL HAZ DE RAYOS X DE LA FUENTE DE RAYOS X, PARA EL TRATAMIENTO POR TERAPIA RADIANTE; B) EL CONCENTRADOR DE RAYOS X ESTA DISENADO EN BASE A LA REFLEXION DE BRAGG EN UN CRISTAL HOPG JUNTO CON UN BEAMSTOP PARA EL RAYO NO REFLEJADO, QUE SE ENFOCA UN HAZ DE RAYOS X CASI MONOENERGETICO SOBRE EL TUMOR; C) APLICAR, EN O SOBRE EL TEJIDO, UN MEDIO DE CONTRASTE ACTIVABLE FOTOELECTRICAMENTE; Y D) LA DETERMINACION DE LA DOSIS DE RADIACION/AUMENTO DE LA DOSIS MEDIANTE LA MEDICION DE FLUORESCENCIA DE RAYOS X
Abstract:
본 발명은 제 1 재료로 이루어진 제 1 층(1) 및 제 2 재료로 이루어지고 상기 제 1 층 상에 증착된 제 2 층(2)으로 형성된 다수의 층 쌍(5)으로 구성되어 기판(3)상에 배치된 층 시퀀스(7)를 포함하는, EUV-방사선을 위한 다층-미러(6)에 관한 것으로서, 본 발명에 따르면 상기 제 1 층(1) 및 제 2 층(2)은 각각 2 nm 이상의 두께를 가지며, 상기 제 1 재료 또는 제 2 재료는 실리콘 붕화물 또는 몰리브덴 질화물이다.
Abstract:
PURPOSE: A device and a method for measuring an aerial image for an EUV(Extreme Ultra-Violet) mask are provided to enable the aerial image of an EUV mask since the number of aperture and the incident level of a scanner are perfectly emulated. CONSTITUTION: A device for measuring an aerial image for an EUV mask comprises a moving unit, an X-ray mirror(20), a zone-plate lens(30) and a detection unit(50). A reflective EUV mask(40) is located on the moving unit. The moving unit moves the reflective EUV mask along an x-axis or a y-axis. The X-ray mirror selects and reflects a given wavelength of light from coherent EUV light. The zone-plate lens focuses the reflected coherent EUV light on a part of the coherent EUV mask. If the focused coherent EUV light is reflected by a part of the reflective EUV maks, the detection unit senses the energy of the reflected coherent EUV light. NA_zonplate, NA_detector and NA_scanner, which are the numeric aperutres of the zone-plate lens, the detection unit and the scanner, and the incident level(σ) of the scanner satisfy the relationships NA_zoneplate = NA_scanner /4 and NA_detector = NA_scanner /4* σ.
Abstract:
광학 요소는, 제 1 재료를 포함하며 제 1 파장의 방사선에 대해 실질적으로 반사적이고, 제 2 파장의 방사선에 대해 실질적으로 투과적으로 구성되는 제 1 층(4)을 포함한다. 광학 요소는, 제 2 재료를 포함하며 상기 제 2 파장의 방사선에 대해 실질적으로 흡수적 또는 투과적으로 구성되는 제 2 층(2)을 포함한다. 광학 요소는, 상기 제 1 층과 상기 제 2 층 사이의 제 3 재료를 포함하며 상기 제 2 파장의 방사선에 대해 실질적으로 투과적이고 상기 제 1 층과 대향되는 상기 제 2 층의 최상부 표면으로부터 상기 제 2 파장의 방사선의 반사를 저감시키도록 구성되는 제 3 층(3)을 포함한다. 상기 제 1 층은 상기 제 2 층에 대한 입사 방사선의 광학 경로에서 상류에 배치되어 상기 제 1 파장의 방사선의 스펙트럼 순도를 향상시킨다.
Abstract:
Disclosed is an electrostatic chuck with a temperature sensing unit, exposure equipment having the electrostatic chuck, and a method of detecting temperature on photomask surfaces. The temperature sensing unit and method of detecting temperature may include obtaining reflectance of a photomask using a multi-wavelength interferometer and determining a temperature on the photomask based on the reflectance.