Abstract:
A receiving device performs reception in a service period of a broadcast signal and switches to a power saving mode in a non-service period. The service period is composed of a first period during which an application data table of an MPE-FEC frame is transmitted and a second period, following the first period, during which an RS data table of the MPE-FEC frame is transmitted. An error correction unit 12 performs one of error correction that uses the whole RS data table according to MPE-FEC, and erasure correction that uses a same number of parity bytes as bytes having bit errors. When the bit errors are corrected by the error correction unit 12 performing erasure correction, a power control unit 30 switches a receiving circuit to a power saving mode before the second period ends.
Abstract:
Bei einen Verfahren zur sicherheitsgerichteten Übertragung einer Information (22) zwischen einem Sender (1) und einen Empfänger (2), wobei zumindest zwei die Information (22) betreffende Telegramme (20, 21) als ein erstes Telegramm (20) über einen ersten Kanal und ein zweites Telegramm (21) über einen zweiten Kanal vom Sender (1) zum Empfänger (2) übertragen werden, wird die Übertragungssicherheit erhöht und eine Restfehlerwahrscheinlichkeit reduziert dadurch, dass für das zweite Telegramm (21) zur Erkennung eines sich während der Übertragung auf die Information (22) auswirkenden Fehlers eine erste Kennzeichnung (23, 31) zumindest aus einer ersten Teilmenge des ersten Telegramms (20) generiert wird, welche beim Empfänger (2) zur Identifizierung der im ersten Telegramm (20) enthaltenen Information (22) verwendet wird. Dieses Verfahren findet Einsatz bei der Kommunikation von einem Sicherheitsschaltgerät (11) zu einer Kontrolleinheit (10).
Abstract:
In a communication system which conforms to the IS-99 standard, a concatenated code is used to provide for error free file transfer over the air. The concatenated code comprises Reed-Solomon coding (22), CRC block coding (32), and convolutional coding (36). At the transmitter, the file is partitioned into data frames and Reed-Solomon encoding (22) is performed on the data frames. CRC block encoding is then performed on the Reed-Solomon encoded data. The CRC encoded data is convolutionally encoded (36). The CRC block encoding (32) and convolutional encoding are performed in accordance with the IS-99 standard. The additional Reed-Solomon encoding step provides improved error correction capability while maintaining compatibility with the IS-99 standard. At the receiver, Reed-Solomon decoding (104) is performed if the number of erasures in a code word is less than or equal to (n-k) or the symbol errors in a code word is less than or equal to (n-k)/2. Otherwise, a request for retransmission is sent.
Abstract:
Polar encoding using two or more concatenated cyclic redundancy check (CRC) data values may enhance CRC-aided successive cancellation list decoding in a communication system. A polar encoding method may include determining first CRC data from source data, combining the source data and the first CRC data to form first combined data, determining second CRC data from the first combined data, and combining the source data, the first CRC data, and the second CRC data to form second combined data.
Abstract:
Methods and apparatus are provided for use in a network such as an optical passive network (PON), and include a first decoder configured to decode an encoded data signal using a first code to generate a decoded signal. When the encoded data signal comprises unknown information that was not successfully decoded by the first decoder and would otherwise be ignored, the unknown information is included in the decoded signal. A second decoder can optionally be configured to decode the decoded signal using a stronger code than the first code.
Abstract:
Un terminal de communication comprend un récepteur apte à recevoir un premier signal de communication dans une tranche temporelle de réception (354, 356) avec une unité de décodage globale pouvant corriger un nombre maximal prédéterminé de symboles erronés consécutifs dans un bloc de symboles correspondant à la tranche temporelle de réception. Une unité de gestion et de commande d'accès du terminal est apte à commander l'émetteur pour émettre un deuxième message (360) dans une tranche temporelle d'émission ininterrompue et distincte (362, 364), ladite tranche temporelle d'émission (362, 364) comprenant au moins un intervalle de temps d'émission (366, 368, 370) associé à une tranche de réception (354), et la durée totale des intervalles de temps d'émission (366, 368) contenus dans la même tranche temporelle de réception (354) est inférieure ou égale à la durée correspondant au nombre maximal prédéterminé de symboles erronés consécutifs que peut corriger l'unité de décodage globale.
Abstract:
A method of encoding data for transmissions from a source to a destination over a communications channel is provided. The method operates on an ordered set of source symbols and may generate zero or more redundant symbols from the source symbols, wherein data is encoded in a first step according to a simple FEC code and in a second step, data is encoded according to a second FEC code, more complex than the first FEC code. The first FEC code and/or the second FEC code might comprise coding known in the art. These steps result in two groups of encoded data in such a way that a low complexity receiver may make use of one of the groups of encoded data while higher complexity receivers may make use of both groups of encoded data.
Abstract:
A digital broadcast system is disclosed. In order to group a plurality of enhanced data packets having information, multiplex the group with main data, and transmit them, the system and method stratify the group to form a plurality of regions, and classify types of inserted data, and processing methods, etc., according to characteristics of stratified regions. Especially, the present invention performs pre-process differently according to types of data inserted to the stratified regions in the group and types of inputted enhanced data, receiving performance of a receiving system can be enhanced even in an environment where channel variation is significant and noise is serious.
Abstract:
A method and apparatus for decoding a linear block encoded string of information bits comprising: converting the string into a plurality of codewords. Performing hard and soft decision on each codeword to generate a hard and soft decision vector. Computing the syndrome and finding the location of the two minimum values by Galois Field Arithmetic. Designating these values LOW1 and LOW2 and xoring with a Nc1, thus generating Nc2. Swapping Nc1 with Nc2 and determining the lowest soft decision value, Min1 and a next lowest value, Min2. The two bit locations creating Min1 are designated as MinA and MinB. MinA being replaced with Min2 minus the value MinA. MinB being replaced with Min2 minus the value at MinB. Generating an output codeword by subtracting Min1 from all other bit locations values and 2's complementing all soft values with 0 in their location. Creating the new soft value vector.
Abstract:
The present invention relates to an apparatus and method for detecting a data rate in a turbo decoder for a mobile communication system. When a rate selector selects one data rate among a plurality of data rates, a turbo decoder repeatedly decodes an input data frame within a predetermined repetition limit number using the selected data rate and outputs the decoded data. A CRC detector performs CRC check on the decoded data and outputs the CRC check result, and a decoding state measurer measures decoding quality depending on the decoded data and outputs decoding state information. A controller then sets the repetition limit number to a predetermined minimum value, controls the repetition limit number according to the decoding state information, controls the rate selector and determines a data rate of the input data depending on the CRC check result.