Abstract:
A mask assembly for protecting a portion of a workpiece from over spray while coating a preselected surface of the workpiece with thermal spray. The mask assembly includes a sheet sized and shaped for covering the portion of the workpiece which the assembly is intended to protect and a support plate selectively mountable over the sheet while the surface is coated with thermal spray. The mask assembly also includes a clamp mountable on the support plate for selectively attaching the support plate to the workpiece thereby clamping the support plate and sheet in position over the portion of the workpiece.
Abstract:
A powder of a barrier material (B) is, after having been melted, applied to a substrate of a polyolefin (A) according to flame spray coating process to give a shaped article, in which the barrier material (B) firmly adheres to the polyolefin (A) even when the surface of the substrate is not subjected to primer treatment. The shaped article is favorable to components to fuel containers, fuel tanks for automobiles, fuel pipes, etc.
Abstract:
Castings for gas turbine parts exposed on one side to a high-temperature fluid medium have cast-in bumps on an opposite cooling surface side to enhance heat transfer. Areas on the cooling surface having defectively cast bumps, i.e., missing or partially formed bumps during casting, are thermally sprayed to provide a metallic cooling enhancement surface layer to salvage the part.
Abstract:
An improved method for the strengthening of the bond strength of a bioactive ceramic coating for a surgical implant is provided where the metallic core material is exposed to a cooling treatment prior to thermal spraying. The metallic core material, or the metallic core material with an inner ceramic layer, when more than one layer of ceramic is to be coated, is cooled to a temperature preferably in the range of null10 to 10null C. before each layer of ceramic is applied by thermally spraying on the material. By use of the cooling treatment in the method, the bond strength of the thermally-sprayed coating(s) on the surgical implant can be increased.
Abstract:
A process for producing a catalyst body includes spraying an aluminum hydroxide and a metallic aluminum simultaneously but separately onto a support body. In the process, the aluminum hydroxide is thermally converted into an aluminum oxide. In addition, an aluminum/silicon compound is thermally sprayed onto the support body at the same time as but separately from the metallic aluminum, and a metallic active component is supplied. Such a catalyst body produced is suitable, in particular, for breaking down pollutants in a temperature range that lies above 400null C. A catalyst body includes the support body and an active compound thermally sprayed thereon. The active compound includes metallic aluminum, an aluminum oxide, an aluminum/silicon compound, and a metallic active component. The active compound is produced by the separate and simultaneous thermal spraying of the metallic aluminum and the aluminum/silicon compound.
Abstract:
An apparatus for processing a workpiece in a micro-environment includes a workpiece housing connected to a motor for rotation. The workpiece housing forms a substantially closed processing chamber where processing fluids are distributed across at least one face of the workpiece by centrifugal force generated during rotation of the housing. The housing may also be detached from the motor and moved to another location. The housing consequently serves as a processing chamber, as well as a storage or transport chamber.
Abstract:
A method of coating an inner surface of a weapon barrel includes the following steps: introducing a plasma burner into the weapon barrel; producing a plasma flame by the plasma burner; directing the plasma flame against the inner barrel surface to cause impingement thereon; introducing a coating material in powder, wire or ribbon form into the plasma flame for melting the coating material to form a molten liquid and for depositing the molten liquid by the plasma flame on the inner barrel surface; and moving the plasma burner inside the weapon barrel axially thereof and relative thereto while performing the depositing step for obtaining a surface coating on the inner barrel surface.
Abstract:
A method of spray forming a weldable metal deposit. The method comprises (a) providing a ceramic spray forming pattern, (b) heating the spray forming pattern to a sustained temperature sufficient to prevent internal stress formation in deposited carbon steel having a carbon content of less than about 0.3 weight percent when deposited on the heated spray forming pattern, (c) spraying metallic particles onto the spray forming pattern heated to the sustained temperature, and (d) allowing the sprayed metallic particles to cool to form a metal deposit. The metallic particles have a carbon content which is sufficient to result in metal particles having a carbon content of less than about 0.3 weight percent when deposited on the heated spray forming pattern. The resulting deposit has a carbon content of less than about 0.3 weight percent.
Abstract:
A metal article which includes a protective coating system is described. The coating system includes a braze alloy layer and a plasma-sprayed bond coat. The bond coat may lie on top of the braze alloy layer, or the braze alloy layer may lie on top of the bond coat. In the case of a porous bond coat, partial or complete densification of the bond coat is sometimes carried out. Densification is achieved by heat treating the article, so that the braze alloy material migrates into the pores of the bond coat to a selected thickness. Related processes are also described.
Abstract:
A thermal spray mixed with a substrate using a non-consumable cylindrical rotating tool. The process may be repeated to create a composite-like coating or material. The coating or material may be machine to improve surface quality.