Abstract:
An ion trap for a mass spectrometer is disclosed. The ion trap includes a ring electrode and first and second electrodes which are arranged on opposite sides of the ring electrode. The ring electrode and the first and second electrodes are configured to generate an electric field based on the received RF signal. The first electrode defines a first aperture and the second electrode defines a second aperture, the first aperture and the second aperture being asymmetric relative to each other and configured to generate a hexapole field.
Abstract:
The method and apparatus provides a voltage gain as well as for generating energy. The anomalous lack of repulsion observed between unbound electrons (54) is exploited by the apparatus which includes an electron gun (9) and a capacitor (57) which is charged by free electrons and is discharged by a circuit (58). The preferred embodiment additionally comprises a magnetic bottle which is activatable.
Abstract:
Diffraction patterns of a sample at various tilt angles are acquired by irradiating a region of interest using a first charged particle beam. Sample images are acquired by irradiating the region of interest using a second charged particle beam. The first and second charged particle beams are formed by splitting charged particles generated by a charged particle source.
Abstract:
A self-guiding cover assembly for a vacuum electron device (VED) enclosure has a cover, a pair of guide plates, and a pair of guide elements. The cover has a top, a sidewall, an inside and an outside, and at least one electrical connector disposed on the inside of the cover for mating with a VED. The pair of guide plates is disposed on opposite sides of the outside of the sidewall of the cover. The guide plates each have a track. The pair of guide elements is mounted on opposite sides of the outside of the sidewall of the cover. The pair of guide elements each mates with the track. The cover further comprises a breach lock mechanism for seating the VED into the VED enclosure having a base. The breach lock mechanism has guide elements mounted on the VED. A first sleeve is mounted on the base and removably receives the VED. A second sleeve is mounted on the base and removably receives the first sleeve. The second sleeve has tracks for mating with the guide elements. A rotation of the second sleeve pulls the VED into the base for seating the VED.
Abstract:
An electron beam emitting device having a first plate provided with electron emitting elements (15) and an electrode (8) opposed to the first plate and given a potential for accelerating electrons emitted from the electron emitting elements (15). A potential regulating part (9) is provided on the electrode (8) side of the first plate, a first potential regulating part that constitutes the potential regulating part (9) is provided within the region of the potential regulating part (9) to which the electrode (8) is projected. The potential regulating part is further defined In a range of 0.83d from the end of the projection region in any direction parallel to the first plate, where d is the distance between the electrode (8) and the potential regulating section (9). Thereby, the path of electrons is stabilized, and a good image can be formed without displacement of light-emission position.
Abstract:
Energie is converted by launching a bundle of discrete self-contained electrons. The bundle is guided along a path defined by a channel (584) in a dielectric (582). Energy from the bundle is transferred by a charge transfer mechanism to a slow wave electrical conductor (588) while the bundle is guided along the path. Energy transferred to the slow wave conductor from the bundle is coupled to a load (590).
Abstract:
An electron beam emitting device having a first plate provided with electron emitting elements (15) and an electrode (8) opposed to the first plate and given a potential for accelerating electrons emitted from the electron emitting elements (15). A potential regulating part (9) is provided on the electrode (8) side of the first plate, a first potential regulating part that constitutes the potential regulating part (9) is provided within the region of the potential regulating part (9) to which the electrode (8) is projected. The potential regulating part is further defined in a range of 0.83d from the end of the projection region in any direction parallel to the first plate, where d is the distance between the electrode (8) and the potential regulating section (9). Thereby, the path of electrons is stabilized, and a good image can be formed without displacement of light-emission position.
Abstract:
A microwave device with a secondary yield coefficient of less than 1 is produced by applying a coating of yttrium-iron-garnet to the inner surface of the device by sputtering.