Abstract:
A method for calibration of an IR spectrometry apparatus for providing and evaluating IR spectra in order to determine very low contents of specific components in a fluid, such as milk, and especially low contents of acetone, in a measuring range above 0, such as from 0.5 mM to 2.0 mM acetone in milk, using at least 50, such as from 50-300 known samples including at least 10 samples representing the fluid without any substantial content of the specific component for the calibration. Preferably, a good calibration for acetone shall be based on spectral information including the spectral ranges 1712-1697, 1419-1396, 1378-1353 and 1249-1226 cm , or at least a substantial portion/part of said ranges. By use of the new calibration of a FT-IR-spectrometry apparatus it will be possible to determine the acetone content during the same IR measurement process used for determining other milk parameters such as fat and protein. In a similar way other small contents of a specified component in a fluid can be determined by use of a method according to the invention.
Abstract:
A mixer for small volumes (2) comprising a mixing chamber (4); and a motor (6) mechanically connected to the mixing chamber (4); wherein the mixing chamber (4) comprises a suspended elongate rigid tube section (8) having a top end (10) and an open bottom end (12), and a flexible tube section (16) extending downwards from the open bottom end (12); and wherein the motor (6) comprises a vibration motor mechanically coupled to the rigid tube section (8) towards the top end (10).
Abstract:
A milk analyser (400) comprising a milk analysis unit (402) having an analysis modality wherein the milk analysis unit (402) further comprises a milk classification system (404) having an imaging device (4042, 4044) configured to image milk for generation of digital image data; a processor (3044) of a computing device (304) which is adapted to execute a program code to implement a deep learning neural network classifier trained using labelled milk images from milk within the classes into which the imaged milk may be classified and operable to generate a classification of the imaged milk; and a controller (3066) configured to output a control signal in dependence of the generated classification to control a sample intake (4022) to regulate the supply of milk to the analysis unit (402).
Abstract:
An indicator reservoir, comprising a porous support material and an indicator substance which is enclosed in pores of the porous support material by a releasable pore-closing material, the pore closing material being bound to the porous support material by a compound that is anchored to the porous support material, the indicator substance being released from the pores when the pore-closing material binds an analyte being present in a liquid that wets the indicator reservoir.
Abstract:
A filtration device (2) comprises a sample chamber (10) housed in a body (4), which body (4) has an open top (6) in communication with the sample chamber (10); a well (24) for liquid filtrate; and a cap (12) for closing the open top (6). The cap (12) has a liquid passageway (22) covered at one end by a filter medium (20) and providing a liquid communication for liquid filtrate from the sample chamber (10). The cap (12) is configured to carry the well (24) at a position closer to an outer periphery (11 ) of the cap (12) than the liquid passageway (22) in a plane parallel to the open top (6) when closed by the cap (12).
Abstract:
A system for manufacturing a concentrate from a liquid source material (30) containing constituents in solution or suspension, the system comprising an evaporator (2) configured to output a liquid concentrate (10) having a concentration of at least one of the constituents higher than a desired concentration; a detector (24) configured to measure on the liquid concentrate in a flow conduit (8) and to generate a signal indicative of the concentration of the at least one of the constituents; and a metering device (16) in fluid communication with a source of metering liquid (22) and with the liquid concentrate (10). The metering device (16) is configured to meter a quantity of the metering liquid into the liquid concentrate (10) in dependence of the signal to achieve a liquid concentrate having the desired concentration.
Abstract:
A system (2) for the optical spectrophotometric assay of components in of a liquid sample (40) comprises an optical spectrophotometer (4) having an inspection zone (18) for receiving a sample for assay (40a); a radiation source (10) configured to generate optical radiation for supply into the inspection zone (18) to impinge on and thereby interact with a received sample for assay (40a); and a nebulizer (24) configured to discharge an aerosol (44) of the liquid sample (40) towards a one of one or more collection surfaces (32) located spaced apart from the nebulizer (24) and disposed to receive discharged aerosol (44) to form the sample for assay (40a).
Abstract:
A Spectrometer System and a Method for Compensating for Time Periodic Perturbations of an Interferogram generated by the Spectrometer System A spectrometer system (2) comprises a scanning interferometer (4); a drive system (6) mechanically coupled to a movable reflector element (14) of the scanning interferometer (4) and operable to effect reciprocation of the movable reflector element (14)at a plurality, preferably more than two, for example three, different scan speeds; a detector arrangement (8) configured to sample at equidistant time intervals an interferogram formed by the scanning interferometer (2) to generate a sampled interferogram; and a data processor (10) is adapted to acquire a sampled interferogram at each of the plurality of different scan speeds and to perform a relative comparison of the content of the so acquired plurality of sampled interferograms.
Abstract:
A filtration system for a liquid comprising a container (2) having an internal container volume (11), a particulate filter portion (10) for allowing passage of the liquid into the internal container volume (11) to form a liquid sample aliquot and a first opening (14) providing access to the internal container volume (11); the filtration system further comprising a non-porous housing (4) configured to provide an internal space (28) for receiving the container (2), the internal space (28) being dimensioned to provide a volume such that the amount left unoccupied by the received container (2) is less than the internal container volume (11).
Abstract:
In a method for hydrodynamic focusing of a laminar and planar sample fluid flow, a system is provided for analysis and/or sorting of microscopic objects in the sample fluid comprising an optical objective for optical inspection of the microscopic objects. Microscopic objects are conveyed in the laminar flow of the sample fluid, and two laminar and planar flow of sheath fluids are provided. The flow of the sample fluid is hydrodynamically focussed at an optical inspection zone of the system by the sheath fluids. Focussing of the flow of the sample fluid is controlled such that all of the microscopic objects in the sample fluid are caused to be conveyed in a common flow direction in one single plane at the inspection zone of the system, and the microscopic objects in the fluid are optically inspected through the optical objective.