Abstract:
A device and method for eliminating an image border of electrophoretic electronic paper includes the following steps: S1, acquiring gray-scale driving waveform information and gray-scale position information, wherein the driving waveform information comprises a level value and a duration corresponding thereof; S2, outputting regulation waveform information based on an termination level value of a first gray scale, a level duration and a starting level value of a second gray scale, wherein the regulation waveform information comprises a level value, an embedding time and an embedding position of a waveform; and S3, modifying the gray-scale driving waveform information based on the regulation waveform information, and controlling an output of a drive electrode based on the modified gray-scale driving waveform information. By using the device and method, an impact of the fringe electric field on movement of electronic paper micro-capsules is eliminated, thus effectively reducing border ghosting.
Abstract:
The disclosure discloses cerium sulfate chelated sulfur dioxide, a preparation method and a use thereof. The cerium sulfate chelated sulfur dioxide has a molecular formula of Ce[SO4][SO2].2H2O. It is a white crystal and the preparation method thereof may comprise the following steps: adding anhydrous cerium sulfate to dilute sulfuric acid with stirring for dissolvation; adding a solvent followed by refluxing at 45-50° C. for 2.0-2.5 h; heating the reaction product to remove the solvent, cooling to 20° C. or lower, and adding dilute sulfuric acid to allow precipitation of all crystals; cooling down the product followed by suction filtration, washing the obtained crystals by the solvent, so that crude cerium sulfate chelated sulfur dioxide can be obtained. The solubility of the cerium sulfate chelated sulfur dioxide of the disclosure has been significantly improved compared to the anhydrous cerium sulfate. The obtained solution is colorless and transparent, so that the cerium sulfate chelated sulfur dioxide can be used as a better titrant with wide application and supreme performance.
Abstract:
An oil puncture controlled starting system for an EFD apparatus and manufacturing method therefor, wherein the EFD display structure comprises a base arranged below a lower electrode, and the base is provided with a step, such that a first liquid has a first thickness outside the step and a second thickness on the step, which is less than the first thickness, such a thickness difference renders the first liquid on the step to be punctured by a second liquid firstly when a lower voltage is applied between a upper electrode and the lower electrode, and the first liquid is pushed by the second liquid to move from a first area to a second area.
Abstract:
A frequency multiplier based on a low dimensional semiconductor structure, including an insulating substrate layer, a semiconductor conducting layer arranged on the surface of the insulating substrate layer, an insulating protective layer arranged on the surface of the semiconductor conducting layer, an insulating carving groove penetrating the semiconductor conducting layer, an inlet electrode arranged on the side surface of the semiconductor conducting layer, and an outlet electrode arranged on the side surface corresponding to the access electrode is provided. The semiconductor conducting layer comprises two two-dimensional, quasi-one-dimensional, or one-dimensional current carrying channels near to and parallel to each other. The frequency multiplier has advantages that the structure is simple, the process is easy to implement, no extra filter circuit needs to be added, dependence on material characteristics is little, and the selection range of materials is wide.
Abstract:
The present invention discloses an epiaxial structure for semiconductor light-emitting device, comprising an electron injection region, a hole injection region, a multi-quantum well active region, a potential barrier layer for blocking carriers, and one or more band edge shaping layers. The doping type and/or doping concentration of said band edge shaping layers are different from those of the adjacent layers. It may trim the band edge shape of the semiconductor energy band through the local built-in electric field formed as a result of adjusting the doping type, doping concentration and/or layer thickness thereof, such that the carriers in the multi-quantum well active region are distributed uniformly, the overall Auger recombination is decreased, and the effective potential barrier height of the potential barrier layer for blocking carriers is increased to reduce the drain current formed by carriers overflowing out of the multi-quantum well active region, thereby improving internal quantum efficiency. The present invention further discloses a semiconductor light-emitting device that employs said epiaxial structure, which similarly achieves the effects of reduced Auger recombination and/or decreased drain current through the trimming of the band edge shape of the energy band structure by the local built-in electric field, thereby improving internal quantum efficiency of the device.
Abstract:
A method and a system for analyzing a transient current of a non-polar liquid, and an apparatus are disclosed. The method includes: measuring a transient current of a to-be-detected device to obtain a transient current reference curve; determining experimental parameters of a first influencing factor in the to-be-detected device according to the transient current reference curve and preset equations, and measuring experimental parameters of a second influencing factor in the device; constructing a transient current reference model according to the experimental parameters of the first and second influencing factors and a preset current model; adjusting parameters of the first and/or second influencing factor in the transient current reference model to obtain a plurality of transient current models; and calculating corresponding transient current change data according to the transient current models to construct and output a plurality of transient current curves.
Abstract:
Disclosed are a method, device, computer system for detecting pedestrians based on 3D point clouds. The method includes: obtaining the spatial radar point cloud data of area to be detected; dividing the spatial radar point cloud data to obtain a plurality of 3D voxel grid cells according to a preset unit of voxel; encoding the plurality of 3D voxel grid cells and obtaining the voxel encoded data of the plurality of radar point cloud data; obtaining a first feature map and a second feature map based on a predetermined sparse convolutional backbone network and self-attention transformation network; and performing fusing processing for a fused feature map to input into a predetermined pedestrian detection model for pedestrian detection to obtain the pedestrian detection information of the area to be detected. The present disclosure enables more comprehensive pedestrian detection in the area to be detected with improved accuracy.
Abstract:
A differential interference imaging system capable of rapidly changing shear direction and amount includes: a light source (101), a filter (102), a polarizer (103), a sample stage (104), an infinite imaging microobjective (105), a tube lens (106), a shear component, an analyzer (113), and an image sensor (114). After the light intensity and a polarization direction is adjusted, the linearly polarized light passes through a transparent sample, to be collected by the infinite imaging microobjective (105) and to implement imaging through the tube lens (106). An imaging beam is divided into two linearly polarized light fields which are perpendicular to each other in the polarization directions and have tiny shear amount, then they are further combined into an interference light filed by the analyzer (103) to form a differential interference image in the image sensor (114). The system may be flexibly assembled, is simple in structure and easy to implement.
Abstract:
The present disclosure relates to the technical field of batteries, and specifically relates to a polyamine composite material and a preparation method therefor, a slurry, a separator, an electrode sheet, and a lithium-sulfur battery containing the same. The polyamine composite material comprises a carboxylated carbon-based material serving as a substrate and a polyamine serving as an outer surface layer, and the polyamine is uniformly and smoothly coated on the outer side surface and/or the inner pore surface of the carboxylated carbon-based material. The material is rich in amino groups and is uniform and stable, can be used in the lithium-sulfur battery, and can effectively adsorb lithium polysulfide during a long cycle process.
Abstract:
The present disclosure provides a photodiode based on a stannous selenide sulfide nanosheet/GaAs heterojunction and a preparation method and use thereof. The photodiode comprises a structure of the stannous selenide sulfide nanosheet/GaAs heterojunction, forming Au electrodes through thermal vapor deposition on the stannous selenide sulfide nanosheet and GaAs, respectively, and conducting an annealing treatment in a protective gas at a temperature in a range of 150-250° C. The heterojunction is formed by transferring the stannous selenide sulfide nanosheet to a GaAs window, and the GaAs window is obtained by depositing a medium layer film on GaAs and etching the medium layer through lithography and an etchant.