Abstract:
A catalyst material having excellent stability, reaction activity and selectivity to produce continuously methyl isobutyl ketone from acetone at high selectivity and high yield for a long time is provided, a method for preparing the catalyst material is provided, and a method for synthesizing methyl isobutyl ketone by using the catalyst material is provided. An ion exchange resin catalyst is represented by the formula, Pd(s)M1(b)M2(c)/porous sulfonated cation exchange resin, wherein: Pd denotes palladium; M1 denotes one or more components selected from nickel(Ni), cobalt(Co), and silver(Ag); M2 denotes one or more components selected from copper(Cu), gold(Au), and ruthenium(Ru) as improver components; and (a), (b) and (c) denote weight percents of the respective metal components based on the dry weight of a porous cation exchange resin, where (a) is 0.3 to 1.5 wt.%, (b) is 0.005 to 0.5 wt.%, and (c) is 0 to 0.5 wt.%. A preparation method of an ion exchange resin catalyst represented by a formula is characterized in that the ion exchange resin catalyst is prepared by ion-exchanging the H^+ type porous sulfonated cation exchange resin with palladium component after primarily ion-exchanging an H^+ type porous sulfonated cation exchange resin with a metal component selected from M1 and M2 suggested in the formula, Pd(s)M1(b)M2(c)/porous sulfonated cation exchange resin, wherein: Pd denotes palladium; M1 denotes one or more components selected from nickel(Ni), cobalt(Co), and silver(Ag); M2 denotes one or more components selected from copper(Cu), gold(Au), and ruthenium(Ru) as improver components; and (a), (b) and (c) denote weight percents of the respective metal components based on the dry weight of a porous cation exchange resin, where (a) is 0.3 to 1.5 wt.%, (b) is 0.005 to 0.5 wt.%, and (c) is 0 to 0.5 wt.%.
Abstract:
본 발명은 디에틸렌글리콜로부터 p-디옥사논을 제조하는 방법에 관한 것으로, 하기 화학식 1로 표시되는 조성을 가진 촉매의 존재하에 디에틸렌글리콜의 탈수소 고리화 반응을 수행하면, 목적하는 p-디옥사논을 고선택성 및 고수율로 촉매의 수시 재활성화 조작을 수행하지 않고도 장기간 안정적으로 제조할 수 있다: CuO(a)M(b)SiO 2 (c)
이때, M은 하나 이상의 알칼리 토금속의 산화물을 나타내고; (a), (b) 및 (c)는 중량을 기준으로 한 백분율로서, 각각 30∼85, 0.01∼5 및 10∼65 범위의 수이다.
Abstract:
본 발명은 결정성 멜라민포스페이트의 제조방법에 관한 것으로서, 보다 상세하게는 분말상의 멜라민에 고농도의 인산수용액을 첨가하여 반응용매의 효과가 거의 나타나지 않는 건식법에 의한 멜라민포스페이트 제조반응을 일정수준까지 진행하고, 여기에 저농도의 인산수용액을 첨가하여 반응계를 물 분산상으로 전환하는 습식법에 의하여 멜라민포스페이트 제조반응을 진행함으로써, 결과적으로 수득된 멜라민포스페이트의 입자가 균일하고 미세한 크기를 나타내며, 멜라민과 인산의 반응이 효율적으로 일어나 반응 생성물 중에 잔류하는 미반응 멜라민 또는 인산 성분이 최소화되어, 과량의 물만을 사용하여 반응을 수행할 경우에 발생하는 반응 분산물의 엉킴현상에 의한 반응물 교착화 현상을 극복함으로써 반응 효율성을 개선한 결정성 멜라민 포스페이트의 제조방법에 관한 것이다.
Abstract:
본 발명은 올레핀, 특별히 에틸렌 소량화 촉매 조성물과 소량화 반응 방법에 관한 것으로, 더욱 상세하게는 Cr 화합물, 리간드, 알킬알루미늄로 구성되고, 리간드 성분으로 피리딘 골격의 2,6 위치에 적절한 배위자리를 갖는 원자를 포함하는 작용기가 치환된 3배위 피리딘 골격 리간드를 적용하며 또한 이들 구성 성분의 조합 비율을 조절함으로써, 올레핀, 특별히 에틸렌의 소량화 반응을 통하여 C 4 ∼C 10 범위의 올레핀을 선택적이며 높은 반응활성으로 제조하는 화학반응에 적용되는 새로운 형태의 촉매 조성물과 이의 적용 방법에 관한 것이다.
Abstract:
PURPOSE: A method for preparing gamma-butyrolactone from maleic acid ester is provided, thereby improving the preparation yield and purity of gamma-butyrolactone under mild condition, and stably preparing the gamma-butyrolactone for a long time. CONSTITUTION: The method for preparing gamma-butyrolactone from maleic acid ester comprises hydrogenation of maleic acid ester in the presence of catalyst of formula: CuO(a)MnO2(b)M(c)SiO2(d) at atmospheric pressure to 12 atmosphere and 150 to 280 deg. C, wherein a, b, c and d are percentage of weight; a is 40 to 90: b is 0.15 to 5; c is 0.001 to 5; d is 5 to 50; and M is one or more metal oxides selected from Zn, Pt, Pd, Re, Ru, Rh, Ca and Mg; the catalyst is activated at 100 to 250 deg. C for 1 to 60 hours prior to the hydrogenation; the maleic acid ester is selected from dimethyl maleate, diethyl maleate, dipropyl maleate, diisopropyl maleate and dibutyl maleate.
Abstract:
PURPOSE: A preparation method of silica stabilized copper catalyst used in hydrogenating or dehydrogenating organic compounds is provided, and the catalyst prepared by the method is provided. CONSTITUTION: The preparation method of Cu/SiO2 catalyst comprises the steps of (a) preparing a slurry solution of copper hydroxide by adding a precipitant solution to an aqueous copper salt solution; (b) preparing a copper hydroxide-silica slurry solution by stirring the mixed solution after adding a colloidal silica solution to the slurry solution; (c) separating sediments from the solution and cleaning the sediment after aging the copper hydroxide-silica slurry solution at a temperature of 50 to 100 deg.C; and (d) drying and baking the cleaned sediment, wherein the precipitant is carbonate or hydroxide of alkaline metal, a weight ratio of copper oxide (CuO) to silica (SiO2) of catalyst is 9:1 to 3:7, the colloidal silica is stabilized by ammonium (NH4¬+), Na¬+ or other alkali metal, has a particle size of 4 to 60 nm, surface area of 100 to 300 m¬2/g and concentration of 5 to 60 wt.% on the basis of silica, and the aging is performed at a temperature of 60 to 90 deg.C for 0.5 to 24 hours.
Abstract:
PURPOSE: Provided are catalyst and a method for ethylene oligomerization. The method can produce olefin with high reaction activity and selectivity by using pyridine derivatives as ligand in catalyst comprised of Cr compound, ligand and alkyl aluminum. CONSTITUTION: The catalyst is consisted of Cr compounds, 3-coordinative pyridine structure ligand, and alkyl aluminum, wherein the ligand is expressed as the formula 1, where R is hydrogen or C1-C6 alkyl group, -X1 and -X2 are =N and -P, respectively, wherein if the X1 or X2 is N(nitrogen), n is 1 whereas if X1 or X2 is P, n is 2, and wherein Ph is phenyl group or replaced phenyl group, and if the Ph is replaced phenyl group, the substituent is selected from a group being consisted of C1-C6 alkyl group and C1-C6 alkoxy group.
Abstract:
PURPOSE: A hydrogenation catalyst which is capable of producing 1,3-propanediol at a high yield and has extended life time and industrial values is provided, and an optimized method for hydrogenating 3-hydroxy alkylpropane using the catalyst is provided. CONSTITUTION: The hydrogenation catalyst is characterized in that it is prepared by adding nano size colloidal silica to the produced particles and aging the nano size colloidal silica added particles after primarily producing particles in a mixed hydroxide form by adding an alkaline precipitant to an aqueous solution containing copper salt, manganese salt and zinc salt and represented as CuO(A)MnO2(B)ZnO(C)SiO2(D), where A is 40 to 85 wt.%, B is 0.15 to 4 wt.%, C is 0.001 to 2.5 wt.%, D is 10 to 60 wt.%, and the total sum of B and C is 5 wt.% or less. The method for preparing 1,3-propanediol comprises a step of activating the hydrogenation catalyst by reducing the hydrogenation catalyst in a stationary phase reactor using hydrogen gas or hydrogen contained gas; and a step of gas phase hydrogenating 3-hydroxy alkylpropane using hydrogen gas or hydrogen contained gas in the presence of the activated catalyst.
Abstract:
PURPOSE: Provided are a composite metal oxide catalyst for vapour phase hydrogenation, a preparation method thereof and a method for preparing phthalide from ester phthalate using the composite metal oxide catalyst, wherein the catalyst exhibits high selectivity, productivity and extended catalytic activity in the process of preparing phthalide from ester phthalate by vapour phase hydrogenation even under the mild conditions of low temperature at 130 to 220 deg.C, low pressure of 1 to 10 atm and low hydrogen/ester phthalate ratio ranging from 500 to 3,000. CONSTITUTION: The catalyst is represented as follows: £CuO(a)ZnO(b)MnO2(c)SiO2(d)|(100-x)M(x), where M is at least one oxide selected from the group consisting of Re oxides, Ru oxides and Ag oxides, a is 20 to 90, b is 0.01 to 10, c is 0.01 to 5, d is 5 to 65 and x is 0.001 to 5, wherein a, b, c, d and x are expressed on the basis of weight. The preparation method of the catalyst comprises the steps of preparing a mixed solution containing copper salt, zinc salt and manganese salt; adding an alkali solution to the mixed solution to coprecipitate copper, zinc and manganese in the form of hydrogel, wherein the temperature of the mixed solution is in the range of 1 to 30 deg.C and pH is kept in the range of 6 to 9; adding nano size colloidal silica to the hydrogel, thereby obtaining a mixed slurry, wherein the colloidal silica is stabilized by NH4¬+, Na¬+ and other alkali metal, and particle size and specific surface area thereof are 4 to 60 nm and 100 to 300 m¬2/g, respectively; hydrothermal aging the mixed slurry at 50 to 100 deg.C for more than 0.5 hr; filtering the mixed slurry after hydrothermal aging to separate cake, followed by washing the cake, wherein the washing is conducted until residual concentration of alkali metal is less than 1000 ppm; and drying and tableting the washed cake.