Abstract:
A multipoint touch surface controller is disclosed herein. The controller includes an integrated circuit including output circuitry for driving a capacitive multi-touch sensor and input circuitry for reading the sensor. Also disclosed herein are various noise rejection and dynamic range enhancement techniques that permit the controller to be used with various sensors in various conditions without reconfiguring hardware.
Abstract:
Apparatuses and methods to sense proximity of an object and operate a proximity sensor of a portable device. In some embodiments, a method includes receiving an ambient light sensor (ALS) output, and altering, based on the ALS output, an effect of a proximity sensor output on control of a proximity determination. The ALS sensor and the proximity sensor may be located adjacent to an earpiece of a portable device. In some cases, the proximity determination may be a proximity of an object to the proximity sensor, and altering the effect may include changing the proximity of the object from a proximity greater than a first threshold to a proximity less than the first threshold. Other apparatuses and methods and data processing systems and machine readable media are also described.
Abstract:
Disclosed herein are liquid-crystal display (LCD) touch screens that integrate the touch sensing elements with the display circuitry. The integration may take a variety of forms. Touch sensing elements can be completely implemented within the LCD stackup but outside (not between) the color filter plate and the array plate. Alternatively, some touch sensing elements can be between the color filter and array plates with other touch sensing elements not between the plates. In another alternative, all touch sensing elements can be between the color filter and array plates. The latter alternative can include both conventional and in-plane- switching (IPS) LCDs. In some forms, one or more display structures can also have a touch sensing function. Techniques for manufacturing and operating such displays, as well as various devices embodying such displays are also disclosed.
Abstract:
A multipoint touch surface controller is disclosed herein. The controller includes an integrated circuit including output circuitry for driving a capacitive multi-touch sensor and input circuitry for reading the sensor. Also disclosed herein are various noise rejection and dynamic range enhancement techniques that permit the controller to be used with various sensors in various conditions without reconfiguring hardware.
Abstract:
An electronic device with a display and a fingerprint sensor displays, on the display, a first user interface. While displaying the first user interface on the display, the device detects movement of a fingerprint on the fingerprint sensor. In response to detecting movement of the fingerprint on the fingerprint sensor: in accordance with a determination that the movement of the fingerprint is in a first direction, the device navigates through the first user interface; and in accordance with a determination that the movement of the fingerprint is in a second direction different from the first direction, the device displays a second user interface different from the first user interface on the display.
Abstract:
A device configured to determine the location and magnitude of a touch on a surface of the device. The device includes a transparent touch sensor that is configured to detect a location of a touch on the transparent touch sensor. The 5 device also includes a force-sensing structure disposed at the periphery of the transparent touch sensor. The force sensor includes an upper capacitive plate and a compressible element disposed on one side of the upper capacitive plate. The force sensor also includes a lower capacitive plate disposed on a side of the compressible element that is opposite the upper capacitive plate. I 100a 1105i APPLIED 1110- RESPONSIVE VALUE(S) 1115' LOCATIONS OF 1120 LOCATIONS AND I 100b
Abstract:
A touch sensor panel is disclosed. In some examples, the touch sensor panel comprises a first touch pixel electrode formed in a first layer, the first touch pixel electrode comprising a plurality of electrically coupled touch pixel segments separated by one or more touch pixel gaps. In some examples, the touch sensor panel comprises a sense connection formed in the first layer and coupled to the first touch pixel electrode, the sense connection configured to couple the first touch pixel electrode to sense circuitry. In some examples, the touch pixel segments and the touch pixel gaps are configured to provide optical uniformity on the touch sensor panel. COMPUTING PERIPHERALS SYSTEM,, 0 S Y 208 202 228 PROCESSO PROCESSO 212 215 STORAGE SIGNALS 208 210 217? I SENSE CHANNEL CHANNELSLOGI1C SIGNALS DRIVE/SENSE TOUCH SCREEN INTERFACE 222-- t
Abstract:
A device configured to determine the location and magnitude of a touch on a surface of the device. The device includes a transparent touch sensor that is configured to detect a location of a touch on the transparent touch sensor. The 5 device also includes a force-sensing structure disposed at the periphery of the transparent touch sensor. The force sensor includes an upper capacitive plate and a compressible element disposed on one side of the upper capacitive plate. The force sensor also includes a lower capacitive plate disposed on a side of the compressible element that is opposite the upper capacitive plate.
Abstract:
A touch sensor panel configured to switch between a mutual capacitance near field sensing architecture and a self-capacitance far field sensing architecture. The touch sensor panel includes circuitry that can switch the configuration of touch electrodes to act as either drive lines in a mutual capacitance configuration or as sense electrodes in a self- capacitance configuration. The touch sensor panel also includes circuitry that can switch the configuration of touch electrodes to act as either sense lines in a mutual capacitance configuration or a sense electrode in a self-capacitance configuration.
Abstract:
A capacitive fingerprint sensor that may be formed of an array of sensing elements. Each capacitive sensing element of the array may register a voltage that varies with the capacitance of a capacitive coupling. A finger may capacitively couple to the individual capacitive sensing elements of the sensor, such that the sensor may sense a capacitance between each capacitive sensing element and the flesh of the fingerprint. The capacitance signal may be detected by sensing the change in voltage on the capacitive sensing element as the relative voltage between the finger and the sensing chip is changed. Alternately, the capacitance signal may be detected by sensing the change in charge received by the capacitive sensing elements as the relative voltage between the finger and the sensing chip is changed.