Abstract:
Methods, systems, and devices for wireless communication are described. A 5G device may decode a control channel transmission of a safety message in a vehicle-to-everything system during a first portion of a time period. The 5G device may identify, based at least in part on the decoding, a pool of resource blocks (RBs) that are available for the time period. The 5G device may select a subset of RBs from the available pool of RBs for a transmission during a second portion of the time period.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE), e.g., a vehicle in a group of platooning vehicles configured for wireless communications, may identify a travel direction of the group of platooning vehicles. The UE may identify a set of time-frequency radio resources allocated to the travel direction. The UE may perform inter-vehicle communications with one or more neighboring vehicles of the group of platooning vehicles using the set of time-frequency radio resources.
Abstract:
Methods, systems, and devices for wireless communication are described. A transmitting device may identify resource blocks (RBs) used to transmit data in a data transmission. The transmitting device may determine a frequency width of a data channel in a frequency domain that is used to transmit the data based at least in part on the identified RBs. The transmitting device may dynamically determine an allocation of RBs used to transmit control information in a control channel. The allocation of RBs may be based on the frequency width of the data channel and may cause a frequency width of the control channel to match the frequency width of the data channel in the frequency domain. The transmitting device may transmit the control information in the control channel to indicate a location of the data channel.
Abstract:
In an aspect, an apparatus, e.g., a base station of a first network, maybe configured to receive UE capability information from each UE of a plurality of UEs, the UE capability information indicating a number of different carrier synchronization timings that the UE can track within a plurality of carriers. The carriers maybe associated with multiple different networks including the first network. The apparatus maybe configured to determine, based on the received UE capability information, a set of synchronization-timing priorities indicating a priority for timing synchronization types for use within each carrier of a set of carriers of the plurality of carriers, and broadcast the set to the UEs. In an aspect, a UE may determine and send the UE capability to a base station. The UE may receive the set of synchronization-timing priorities and perform timing synchronization based on the received set of synchronization-timing priorities.
Abstract:
Methods, systems, and devices for wireless communication are described. Contention procedures may include a shared radio frequency (RF) spectrum region to access resources in another shared RF spectrum region. For example, a wireless device may operate in a synchronous system and identify a set of target resources for a data transmission. The wireless device may contend for the target resources by performing a procedure, such as a listen-before-talk (LBT) procedure, in a first shared RF spectrum region that is smaller than, and overlaps in frequency with, a second shared RF spectrum region that includes the target resources. Resources used for the LBT procedure may be included in a different time period than the target resources, where LBT resources may correspond to target resources in different time periods. The target resources may also include multiple sub-channels, and LBT resources may be mapped to one or more of the sub-channels.
Abstract:
A method, computer-readable medium, and apparatus operate to reduce or eliminate interference with one or more other communication systems having specific transmission requirements within a specific geographic area. For example, aspects operate by determining that a user equipment (UE) is in a protection zone where additional transmission requirements apply. The additional transmission requirements enable coexistence with one or more other communication systems in the protection zone. The UE may identify, based on being in the protection zone and a coexistence mode, one or more transmit emission limit requirements to be met. The UE may identify, based on being in the protection zone and the coexistence mode, one or more maximum transmit power requirements to be met. The UE may configure a transmit output power, at which the UE can meet the one or more transmit emission limit requirements and the one or more maximum transmit power requirements.
Abstract:
Aspects of the disclosure relate to beamforming from a vehicle user equipment (UE). In a first aspect, a beamform vector is selected based on beamform data received from a scheduling entity. Here, the beamform data corresponds to a path between a vehicle UE and a base station or another vehicle, and the beamform vector includes respective phases and amplitudes corresponding to each of a plurality of antennas of the vehicle UE. A beam is then generated in accordance with the beamform vector. In another aspect, a database of beamform data is maintained, and beamform data from the database is retrieved. Here, the retrieved beamform data corresponds to a particular location pair that includes a first location associated with a location of a vehicle UE, and a second location associated with a location of a base station or another vehicle. The beamform data is then transmitted to the vehicle UE.
Abstract:
Aspects of the present disclosure relate to wireless communications and, more particularly, to techniques for sharing sensor information. The techniques may be practiced, for example, in a vehicle to vehicle (V2V) environment, where frequency resources are mapped based on vehicle location(s).
Abstract:
Wireless communications systems and methods related to transmission of platoon information. A first vehicle in a vehicle platoon obtains a first radio resource spanning a frequency channel and a time period for synchronous transmission with at least a second vehicle in the vehicle platoon. The first vehicle transmits, synchronously with at least the second vehicle, information associated with the vehicle platoon in the frequency channel and the time period of the first radio resource. The first vehicle may obtain the first radio resource by requesting a transmission request from a wireless communication device and receiving a transmission grant indicating the first radio resource. Alternatively, the first vehicle may obtain the first radio resource by selecting the first radio resource based on at least one of a sensing report or a resource reservation received from the second vehicle.
Abstract:
A transmitting UE in a device-to-device (D2D) communication may identify a demodulation reference signal (DMRS) sequence for a D2D transmission based at least in part on a subset of bits of a sidelink control information (SCI) transmission. The subset of bits of the SCI transmission may be selected such that the bits have sufficient variability to reduce the likelihood that multiple UEs may use the same DMRS sequence. The subset of bits of the SCI transmission may be all or a portion of a cyclic redundancy check (CRC) for the SCI.