Abstract:
A semiconductor structure includes a metal gate, a second dielectric layer and a contact plug. The metal gate is located on a substrate and in a first dielectric layer, wherein the metal gate includes a work function metal layer having a U-shaped cross-sectional profile and a low resistivity material located on the work function metal layer. The second dielectric layer is located on the metal gate and the first dielectric layer. The contact plug is located on the second dielectric layer and in a third dielectric layer, thereby a capacitor is formed. Moreover, the present invention also provides a semiconductor process forming said semiconductor structure.
Abstract:
The present invention provides a manufacturing method of a semiconductor device, at least containing the following steps: first, a substrate is provided, wherein a first dielectric layer is formed on the substrate, at least one metal gate is formed in the first dielectric layer and at least one source drain region (S/D region) is disposed on two sides of the metal gate, at least one first trench is then formed in the first dielectric layer, exposing parts of the S/D region. The manufacturing method for forming the first trench further includes performing a first photolithography process through a first photomask and performing a second photolithography process through a second photomask, and at least one second trench is formed in the first dielectric layer, exposing parts of the metal gate, and finally, a conductive layer is filled in each first trench and each second trench.
Abstract:
According to one embodiment of the present invention, a method for forming a semiconductor structure having an opening is provided. First, a substrate is provided, wherein a first region and a second region are defined on the substrate and an overlapping area of the first region and the second region is defined as a third region. Then, a material layer is formed on the substrate. A first hard mask and a second hard mask are formed on the material layer. The first hard mask in the first region is removed to form a patterned first hard mask. The second hard mask in the third region is removed to form a patterned second hard mask. Lastly, the material layer is patterned by using the patterned second hard mask layer as a mask to form at least an opening in the third region only.
Abstract:
The present invention provides a method for forming a fin structure comprising the following steps: first, a substrate is provided and a plurality of fin structures, a plurality of first dummy fin structures and a plurality of second dummy fin structures are formed on the substrate; a first patterned photoresist is used as a hard mask to perform a first etching process to remove each first dummy fin structure; then a second patterned photoresist is used as a hard mask to perform a second etching process to remove each second dummy fin structure, wherein the pattern density of the first patterned photoresist is higher than the pattern density of the second patterned.
Abstract:
A method of forming a semiconductor structure having at least a contact plug includes the following steps. At first, at least a transistor and an inter-layer dielectric (ILD) layer are formed on a substrate, and the transistor includes a gate structure and two source/drain regions. Subsequently, a cap layer is formed on the ILD layer and on the transistor, and a plurality of openings that penetrate through the cap layer and the ILD layer until reaching the source/drain regions are formed. Afterward, a conductive layer is formed to cover the cap layer and fill the openings, and a part of the conductive layer is further removed for forming a plurality of first contact plugs, wherein a top surface of a remaining conductive layer and a top surface of a remaining cap layer are coplanar, and the remaining cap layer totally covers a top surface of the gate structure.
Abstract:
Semiconductor devices and method of manufacturing such semiconductor devices are provided for improved FinFET memory cells to avoid electric short often happened between metal contacts of a bit cell, where the meal contacts are positioned next to a dummy gate of a neighboring dummy edge cell. In one embodiment, during the patterning of a gate layer on a substrate surface, an improved gate slot pattern is used to extend the lengths of one or more gate slots adjacent bit lines so as to pattern and sectionalize a dummy gate line disposed next to metal contacts of an active memory cell. In another embodiment, during the patterning of gate lines, the distances between one or more dummy gates lines disposed adjacent an active memory cell are adjusted such that their locations within dummy edge cells are shifted in position to be away from metal contacts of the active memory cell.
Abstract:
A method for fabricating semiconductor device includes the steps of: providing a substrate; forming a first gate structure on the substrate, a first spacer around the first gate structure, and an interlayer dielectric (ILD) layer around the first spacer; performing a first etching process to remove part of the ILD layer for forming a recess; performing a second etching process to remove part of the first spacer for expanding the recess; and forming a contact plug in the recess.
Abstract:
A method for fabricating semiconductor device first includes providing a substrate and a shallow trench isolation (STI) in the substrate, in which the substrate includes a first metal gate and a second metal gate thereon, a first hard mask on the first metal gate and a second hard mask on the second metal gate, and a first interlayer dielectric (ILD) layer around the first metal gate and the second metal gate. Next, the first hard mask and the second hard mask as mask are utilized to remove part of the first ILD layer for forming a recess, and a patterned metal layer is formed in the recess and on the STI.
Abstract:
A semiconductor device and a method of fabricating the same are provided. The semiconductor device includes a substrate, a plurality of gates and a plurality of plugs. The gates are disposed on the substrate and extend in a first direction. The gates include a first gate and a second gate. The first gate includes a first protruding portion extending in a second direction. The plugs are disposed parallel to one another on the substrate. The plugs include a first plug and a second plug. The first plug and the second plug cover the first gate and the second gate respectively. A central axis of the first plug is shifted from a central axis of the first gate toward the second direction, and a central axis of the second plug is shifted from a central axis of the second gate toward the second direction.
Abstract:
A method for fabricating semiconductor device is disclosed. First, a first fin-shaped structure and a second fin-shaped structure are formed on a substrate, and a shallow trench isolation (STI) is formed around the first fin-shaped structure and the second fin-shaped structure, a patterned hard mask is formed on the STI. Next, part of the first fin-shaped structure and part of the second fin-shaped structure adjacent to two sides of the patterned hard mask are removed for forming a first recess and a second recess, and a dielectric material is formed into the first recess and the second recess.