Abstract:
A wet coating method is described, which includes the following steps. A film coating is applied to at least one surface of a substrate using a wet process. A plasma-assisted filling treatment is performed on the film coating to crystallize the film coating into a film. The plasma-assisted filling treatment includes using a filling coating.
Abstract:
[Task] To provide an active energy ray-curable composition capable of forming within a short time a cured coating film having a favorable outer appearance and excellent abrasion resistance, cracking resistance, and weather resistant adhesiveness, a laminate having the cured coating film laminated on a substrate surface, and a method for producing the same.An active energy ray-curable composition containing the following component (A) to component (D):(A) a siloxane-based oligomer that is a hydrolytic condensate of a silane-based monomer containing an organoalkoxysilane represented by Formula (1), in which the siloxane-based oligomer has a weight average molecular weight of 2,000 or less R1aSi(OR2)4-a (1) (in which R1 represents an organic group with 1 to 10 carbon atoms, R2 represents an alkyl group with 1 to 5 carbon atoms or an acyl group with 1 to 4 carbon atoms, and a represents an integer of 1 to 3),(B) an epoxy group-containing alkoxysilane represented by Formula (2) R3R4bSi(OR5)3-b (2) (in which R3 represents an organic group containing an epoxy group, R4 represents an organic group with 1 to 10 carbon atoms, R5 represents an alkyl group with 1 to 5 carbon atoms or an acyl group with 1 to 4 carbon atoms, and b represents an integer of 0 to 2),(C) an organic polymer having a weight average molecular weight of 30,000 or more, and(D) an active energy ray-sensitive acid generating agent.
Abstract:
Methods are provided for surface modifying a hydrophobic polymer substrate to increase wettability comprising the steps of pre-treating the hydrophobic polymer substrate with a radio frequency (RF)-generated first plasma and a RF-generated second plasma wherein the first plasma and the second plasma are applied sequentially, coating the hydrophobic polymer substrate with a hydrophilic coating; and polymerizing the hydrophilic coating on the hydrophobic polymer substrate by exposure to a RF-generated third plasma.
Abstract:
A method for treating an item which, in use, is subjected to flexing, to reduce its susceptibility to water penetration over time during use, said method comprising forming a water repellent coating or surface modification on the surface of the item by ionisation or activation technology.
Abstract:
A method of making a polymer coating on a microstructured substrate. The method may be performed by vaporizing a liquid monomer or other pre-polymer composition and condensing the vaporized material onto a microstructured substrate, followed by curing. The resulting article may possess a coating that preserves the underlying microstructural feature profile. Such a profile-preserving polymer coating can be used to change or enhance the surface properties of the microstructured substrate while maintaining the function of the structure.
Abstract:
A method of making a polymer coating on a microstructured substrate. The method may be performed by vaporizing a liquid monomer or other pre-polymer composition and condensing the vaporized material onto a microstructured substrate, followed by curing. The resulting article may possess a coating that preserves the underlying microstructural feature profile. Such a profile-preserving polymer coating can be used to change or enhance the surface properties of the microstructured substrate while maintaining the function of the structure.
Abstract:
A hybrid film, comprising a first polymer film having a plasma-treated surface and a second polymer film having first and second surfaces, with the first surface of the second polymer film being disposed along the first plasma-treated surface of the first polymer film, has superior thermal and mechanical properties that improve performance in a number of applications, including food packaging, thin film metallized and foil capacitors, metal evaporated magnetic tapes, flexible electrical cables, and decorative and optically variable films. One or more metal layers may be deposited on either the plasma-treated surface of the substrate and/or the radiation-cured acrylate polymer. A ceramic layer may be deposited on the radiation-cured acrylate polymer to provide an oxygen and moisture barrier film. The hybrid film is produced using a high speed, vacuum polymer deposition process that is capable of forming thin, uniform, high temperature, cross-linked acrylate polymers on specific thermoplastic or thermoset films. Radiation curing is employed to cross-link the acrylate monomer. The hybrid film can be produced in-line with the metallization or ceramic coating process, in the same vacuum chamber and with minimal additional cost.
Abstract:
In a method of treating a surface normally susceptible to fogging, a gas plasma is applied to chemically modify and thereby increase the surface energy of the surface. The gas plasma includes at least 80% water vapor plasma by weight. The increased surface energy causes the surface to have reduced susceptibility to fogging. In a method of increasing the adhesion between a material and a surface, a gas plasma is applied to chemically modify and thereby increase the surface energy of the surface. The gas plasma includes at least 80% water vapor plasma by weight. The increased surface energy causes the surface to have increased adhesive properties relative to the material.
Abstract:
The present invention is a surface modification process which provides a means of rapidly heating a thin layer of a polymer surface or a thin coating of material on a coated substrate and various surfaces produced by such a process.
Abstract:
A method for coating a cylindrical container with a thin, resinous coating by spraying powdered resin is disclosed. The technique involves spraying of finely divided resin particles into a beverage container from spray nozzles external to the container. The container may be sprayed by directing a pulse of a predetermined quantum of resin into the container to deposit a substantially uniform coating. Alternatively, a continuous flow of resin at a predetermined rate may be sprayed into a container. The resin particles are caused to adhere to the container by preheating the container. The coating is rendered continuous by preheating the container to temperatures above the softening point of the resin. Postheating of the coated container at temperatures in excess of about 300.degree. F. matures the coating.