Abstract:
The automotive vehicle structural part (30) comprises at least a main panel (40) and a wheel casing (42), said main panel (40) and said wheel casing (42) being made of two distinct three-dimensional parts made of different materials attached to each other by welding.
Abstract:
A method of laser welding a workpiece stack-up includes directing a laser beam at a top surface of a first metal workpiece to form a keyhole that entirely penetrates the workpiece stack-up, including an underlying second metal workpiece, so that the keyhole reaches a bottom surface of the second metal workpiece. A zone of negative pressure established under the bottom surface of the second metal workpiece extracts vapors that are produced by the laser beam. The vapors, in particular, are extracted from the bottom surface of the second metal workpiece through the keyhole. A bottom workpiece holder that supports the bottom metal workpiece during laser welding may be constructed to establish the zone of negative pressure.
Abstract:
When resistance spot welding a set of plates obtained by overlapping a plurality of steel plates comprising one or more steel plates having, on the surface thereof, a plating layer having zinc as the principal component thereof, a nugget having sufficient diameter is stably formed without any splashing, by: (1) starting conduction while in a state in which t and L satisfy the relational expression 0.9×t≤L≤1.1×t, given that the total thickness of the overlapping steel plates is t, and the distance of the center interval between top and bottom electrodes is L; and (2) dividing the conduction into a main conduction and an initial conduction preceding the main conduction, and with the initial conduction treated as two stages of conduction, setting the current value (I1) in the first conduction stage of the initial conduction so as to fall into a range satisfying, in a relationship with the current value (Im) of the main conduction, Im×1.1≤I1≤15.0kA, and setting the current value (I2) in the subsequent second conduction stage to be off or to be low-current conduction so as to satisfy 0≤I2≤Im×0.7.
Abstract:
A welding method and system (4) using a robotic arm (10), a welding robot (18) and a welding table (2) placed at an angle from horizontal to hold two C-channels (6 and 8) facing each other to maintain position and be welded together. C-channels (6 and 8) face each other to form a closed channel at increased welding speed with less materials having resulting benefits including constant welding, less distortion, and less welding material. Welding begins with restraining C-channels (6 and 8) in conjunction with the angled welding table (2). A robotic arm (10) handles C-channels (6 and 8) to move, place and restrain them relative to each other and the welding table (2). A pressing tool (12) may be a set of pressure-exerting tools (26). A welding robot (18) with a seam finding system (24) preferably welds the restrained C-channels (6 and 8) from top to bottom.
Abstract:
Um ein Verfahren zum Fügen eines mehrschichtigen Bauteils (10) mit einem weiteren Bauteil (11) derart weiter zu verbessern, dass das mehrschichtige Bauteil (1') mechanisch und elektrisch mit weiteren Elementen verbunden werden kann, wird vorgeschlagen, eine Zwischenschicht (14) des mehrschichtigen Bauteils (10) im Bereich der Fügestelle (32) zu verdrängen und die beiden äußeren Bauelemente (12, 13) des mehrschichtigen Bauteils (10) durch Anlegen einer elektrischen Spannung miteinander zu verbinden und im Bereich der Fügestelle (32) das weitere Bauteil (11) als Verbindungselement mit dem mehrschichtigen Bauteil (10) zu verbinden.
Abstract:
L'invention porte principalement sur un procédé de préparation de tôles (11, 12) destinées à la fabrication d'un flan soude d'acier, comprenant les étapes successives suivantes : on approvisionne au moins une première (11) et une seconde (12) tôles d'acier pré- revêtues, constitutées d'un substrat en acier (25,26), et d'un pré- revêtement (15,16) constitué d'une couche d'alliage intermétallique (17,18) en contact avec ledit substrat en acier, surmontée d'une couche métallique d'aluminium ou d'alliage d'aluminium ou à base d'aluminium (19,20), la tôle (11) comprenant une face principale (111), une face principale opposée (112), et au moins une face secondaire (71), la tôle (12) comprenant une face principale (121), une face principale opposée (122), et au moins une face secondaire (72), puis on accoste la première (11) et seconde (12) tôle, en laissant un jeu (31) compris entre 0,02 et 2 mm entre les faces secondaires (71) et (72) placées en regard, I'accostage de la première (11) et seconde tôle (12) définissant un plan médian (51) perpendiculaire aux faces principales des tôles (11) et (12), puis on enlève simultanément par fusion et vaporisation, sur les faces principales (111, 121) les couches d'alliage métallique (19, 20) dans une zone périphérique (61, 62) des tôle (11, 12), les zones périphériques (61) et (62) étant les zones des faces principales (111) et (121) les plus proches par rapport audit plan médian (51) situées de part et d'autre par rapport a celui-ci.
Abstract:
A laser cutting device (100) is configured to etch an inner surface of a journal bearing (18). The laser cutting device (100) includes a laser (102); a beam directing tool (130) that receives a beam (108) emitted from the laser (102) and selectively changes the direction of travel of the beam (108); a fixture (170) that supports the journal bearing (18) in a desired position relative to the beam directing tool (130); an actuator (148) connected to one of the beam directing tool (130) and the fixture (170), the actuator (148) providing relative movement between the beam directing tool (130) and the fixture (170); and a controller (180) that controls the intensity and duration of the beam (108) emitted from the laser (102); and the actuator (148), whereby material can be removed from a surface of the journal bearing (18) to a precise width and depth, and in any pattern.
Abstract:
A laser processing unit (10) includes a workpiece loading station (30). A laser workstation (32) includes a laser robot (90) operable to perform a laser operation on a workpiece (W2). A track (12, 14) extends from the loading station (30) through the workstation (32). A first stationary wall section (40) separates the workstation from the loading station at a proximal side of the workstation. A second stationary wall section (50) is offset from the first stationary wall section at a distal side. A first movable wall section (60) forms a laser light-tight seal with the first stationary wall section. A second movable wall section (70) forms a laser light-tight seal with the second stationary wall section. A shuttle (20) is operable to move along the track (12; 14) to deliver the workpiece (W^ W2) from the loading station (30) to the workstation (32). The movable wall sections are supported by the shuttle and move concurrently with the shuttle and the workpiece, as the workpiece is delivered to the workstation.