Abstract:
The present invention is focused on a revolutionary, low-cost (highly-scaleable) approach for the mass production of three-dimensional microcomponents: the biological reproduction of naturally-derived, biocatalytically-derived, and/or genetically-tailored three-dimensional microtemplates (e.g., frustules of diatoms, microskeletons of radiolarians, shells of mollusks) with desired dimensional features, followed by reactive conversion of such microtemplates into microcomponents with desired compositions that differ from the starting microtemplate and with dimensional features that are similar to those of the starting microtemplate. Because the shapes of such microcomponents may be tailored through genetic engineering of the shapes of the microtemplates, such microcomposites are considered to be Genetically-Engineered Materials (GEMs).
Abstract:
Methods for producing microstructure bodies are known in which a metallic or ceramic powder comprising an organic binding system is used. The microstructure bodies obtained in such a manner comprise a comparatively low precision due to the volume shrinkage which occurs during debinding. The aim of the invention is to provide a method which is effective without the use of binding systems and which makes it possible to obtain a precision in the lower micrometer and submicrometer range. To this end, a method is provided in which a layer of a radiosensitive plastic is firstly deposited on a substrate surface (10) and is microstructured using a lithographic method. At least one material (14) is deposited onto the microstructured plastic layer (11) obtained in such a manner by means of thermal spraying. Lastly, the plastic layer and/or the substrate are/is completely or partially removed. It is also possible to remove the material applied by spraying at least up to the height of the top edge of microstructures of the plastic layer. Metallic and ceramic microstructure bodies can be obtained with high precision by using this method.
Abstract:
PURPOSE: A manufacturing method for a micromechanical part is provided to manufacture parts provided to the most of watch with a good quality. CONSTITUTION: A manufacturing method for a micromechanical part is as follows. A substrate made with manufacturable minute materials is provided(3). A pattern comprised of parts penetrated through the substrate is etched(5). The etched substrate is installed on supports in order to make the top surface and the bottom surface of the substrate accessible(7). A coating with an excellent rubbing quality is spread on the outer surface of the parts. The parts are separated from the substrate(11).
Abstract:
The invention relates to a micromechanical timepiece part comprising a silicon-based substrate (1) having at least one surface, at least one part of said surface having pores (2) which open out at the external surface of the micromechanical timepiece part and comprise a tribological agent (5).The invention likewise relates to a method for producing a micromechanical timepiece part starting from a silicon-based substrate (1), said silicon-based substrate having at least one surface, at least one part of which is lubricated by a tribological agent (5), said method comprising, in order, the steps of: a) forming pores (2) on the surface of the part of said surface of said silicon-based substrate (1), b) depositing said tribological agent (5) in said pores (2).
Abstract:
The invention relates to a silicon-based component with at least one chamfer formed from a method combining at least one oblique side wall etching step with a “Bosch” etching of vertical side walls, thereby enabling aesthetic improvement and improvement in the mechanical strength of components formed by micromachining a silicon-based wafer.
Abstract:
The invention relates to a process for fabricating a monolayer or multilayer metal structure in LIGA technology, in which a photoresist layer is deposited on a flat metal substrate, a photoresist mold is created by irradiation or electron or ion bombardment, a metal or alloy is electroplated in this mold, the electroformed metal structure is detached from the substrate and the photoresist is separated from this metal structure, wherein the metal substrate is used as an agent involved in the forming of at least one surface of the metal structure other than that formed by the plane surface of the substrate.
Abstract:
The manufacturing process produces a part (10), from a micromachinable material, the part (10) forming a blank of the timepiece component and comprising at least one surface having an initial roughness. It comprises a step of mechanical strengthening treatment of the part in an etching fluid intended to decrease the roughness of said surface. For example, a substrate of said micromachinable material is provided; the substrate is at least partially covered with a protective coating containing at least one aperture; the substrate is etched through the aperture in the protective coating and an etched surface is thus obtained; the mechanical strengthening treatment is applied to said etched surface through the aperture in the protective coating; and then the protective coating is removed. The etching fluid may be a plasma or a liquid chemical etchant.
Abstract:
A timepiece component, such as a balance, an oscillating mass or a wheel, having a structure made according to a micro-manufacturing technique, such as the DRIE technique. The component has at least one member formed in or at the periphery of the structure and made of a material different from that of the structure. This member is typically metal and is formed by electro-forming using a cavity of the structure as a mold.
Abstract:
A method of manufacturing a mechanical part includes the steps of providing a micro-machinable substrate; etching a pattern which includes the part through the entire substrate using photolithography; mounting the etched substrate on a support so as to leave the top and bottom surfaces of said substrate accessible for coating; depositing a tribological quality improving coating of on the outer surface of the part; and releasing the part from the substrate.