進行波型光変調器
    81.
    发明申请
    進行波型光変調器 审中-公开
    行波光学调制器

    公开(公告)号:WO2008047551A1

    公开(公告)日:2008-04-24

    申请号:PCT/JP2007/068857

    申请日:2007-09-27

    Abstract:  進行波型光変調器の電気/光変換応答の周波数特性を広帯域に渡り調整し、ジッターを抑制すると共に、光伝送特性を改善した進行波型光変調器を提供することを目的とする。  電気光学効果を有する基板と、該基板に形成された光導波路と、該光導波路中を伝搬する光波を変調制御するための変調用電極とを有する進行波型光変調器20において、該変調用電極は、信号電極部21と接地電極部とから構成され、該信号電極部の入力側に接続された入力インターフェース部22と、該信号電極部の終端側に接続された終端器23とを有し、該入力インターフェース部と該信号電極部との間には、周波数特性を調整するための調整フィルタ31が配置されていることを特徴とする。  好ましくは、調整フィルタ31は、パッシブフィルタであることを特徴とする。

    Abstract translation: 可以提供一种可以在宽带上调整行波光调制器的电光转换响应的频率特性的行波光调制器,抑制抖动,提高透光特性。 行波光调制器(20)包括:具有电光效应的基板; 形成在基板上的光波导; 以及用于调制/控制在光波导中传播的光波的调制电极。 调制电极由信号电极单元(21)和接地电极单元形成,并且包括连接到信号电极单元的输入侧的输入接口单元(22)和连接到信号电极单元的端子侧的端子(23) 信号电极单元。 用于调节频率特性的调节滤波器(31)设置在输入接口单元和信号电极单元之间。 调整滤波器(31)优选为无源滤波器。

    光制御素子
    82.
    发明申请
    光制御素子 审中-公开
    灯控元件

    公开(公告)号:WO2008038778A1

    公开(公告)日:2008-04-03

    申请号:PCT/JP2007/068999

    申请日:2007-09-28

    Abstract:  70Ω以上のハイ・インピーダンスを有する信号線路を必要とする場合であっても、マイクロ波と光波との速度整合やマイクロ波のインピーダンス整合が実現でき、しかも、駆動電圧の低減が可能な光制御素子を提供することを目的とする。  電気光学効果を有し、厚みが10μm以下の薄板1と、該薄板に形成された光導波路2と、該光導波路を通過する光を制御するための制御電極とを有する光制御素子において、該制御電極は、該薄板を挟むように配置された第1電極と第2電極とからなり、該第1電極は、少なくとも信号電極4と接地電極5(51)とからなるコプレーナ型の電極を有し、該第2電極は、少なくとも接地電極54を有すると共に、第1電極の信号電極と協働して該光導波路に電界を印加するよう構成され、かつ該第1電極の信号電極は、少なくとも1つの信号線路が途中で2つ以上に分岐される分岐信号線路を有していることを特徴とする。

    Abstract translation: 提供一种能够实现微波和光波之间的速度匹配以及微波阻抗匹配并降低驱动电压的光控制元件,即使当需要具有高于70O的高阻抗的信号线时。 光控制元件包括:具有电光效应且厚度不大于10μm的薄板(1); 形成在所述薄板上的光波导(2) 以及用于控制通过光波导的光的控制电极。 控制电极由第一电极和布置成夹住薄板的第二电极形成。 第一电极具有至少具有信号电极(4)和接地电极(5)(51)的共面型电极。 第二电极具有至少一个接地电极(54),并配置成与第一电极的信号电极协作地向光波导施加电场。 第一电极的信号电极具有分支信号线,其是分支到两个或更多个分支的至少一个信号线。

    SLOW WAVE OPTICAL WAVEGUIDE FOR VELOCITY MATCHED SEMICONDUCTOR MODULATORS
    83.
    发明申请
    SLOW WAVE OPTICAL WAVEGUIDE FOR VELOCITY MATCHED SEMICONDUCTOR MODULATORS 审中-公开
    用于速度匹配半导体调制器的慢波光波导

    公开(公告)号:WO2005045511A1

    公开(公告)日:2005-05-19

    申请号:PCT/US2004/035431

    申请日:2004-10-26

    Abstract: A PIN electro-optical traveling wave modulator (10) including diffraction gratings (34, 36) positioned at opposing sides of an optical waveguide (20) that act to change the propagation pattern of the waveguide (20). The modulator (10) includes an N-type layer (14), a P-type layer (18) and an intrinsic layer (16) acting as the waveguide (20). A metal electrode (26) is in electrical contact with the N-type layer (14), and a metal electrode (30) is in electrical contact with the P-type layer (18). The electrodes (26, 30) define an RF transmission line. An optical wave (22) propagates along the waveguide (20) and interacts with the gratings (34, 36) which slow the optical wave (22) to match its speed to the speed of the RF wave in the transmission line. In one embodiment, the gratings (34, 36) are 2-D gratings formed by vertical holes (38) in the waveguide (20).

    Abstract translation: 一种PIN电光行波调制器(10),其包括位于光波导(20)的相对侧的衍射光栅(34,36),其用于改变波导(20)的传播图案。 调制器(10)包括N型层(14),P型层(18)和用作波导(20)的本征层(16)。 金属电极(26)与N型层(14)电接触,金属电极(30)与P型层(18)电接触。 电极(26,30)限定RF传输线。 光波(22)沿着波导(20)传播并与光栅(34,36)相互作用,光栅(34,36)使光波(22)的速度与传输线中的RF波的速度相匹配。 在一个实施例中,光栅(34,36)是由波导(20)中的垂直孔(38)形成的2-D光栅。

    MAGNETO-OPTICAL MODULATOR FOR SUPERCONDUCTING DIGITAL INTERFACE
    84.
    发明申请
    MAGNETO-OPTICAL MODULATOR FOR SUPERCONDUCTING DIGITAL INTERFACE 审中-公开
    用于超级数字接口的磁光调制器

    公开(公告)号:WO03003578A3

    公开(公告)日:2003-08-07

    申请号:PCT/US0204567

    申请日:2002-02-15

    Applicant: UNIV ROCHESTER

    Inventor: SOBOLEWSKI ROMAN

    CPC classification number: G02F1/09 G02F1/0036 G02F2201/127

    Abstract: A magneto-optic modulator 1 modulates signals from a superconducting circuit such as a single-flux-quantum SFQ logic system onto a carrier wave light beam. The modulator is formed by depositing a magneto-optic material 3 such as EuSe onto a superconducting ground plane 5 such as that of the circuit. A microwave microstrip line 7 is formed on the magneto-optic material and carries a signal from the circuit. The signal induces an H field in the magneto-optic material which causes the magneto-optic material to modulate the light.

    Abstract translation: 磁光调制器1将来自诸如单通量量子SFQ逻辑系统的超导电路的信号调制到载波光束上。 通过将诸如EuSe的磁光材料3沉积到诸如电路的超导接地平面5上而形成调制器。 微波微带线7形成在磁光材料上并承载来自电路的信号。 该信号在磁光材料中引起H场,其导致磁光材料调制光。

    VELOCITY MATCHED ELECTRO-OPTIC DEVICES
    86.
    发明公开

    公开(公告)号:US20240280846A1

    公开(公告)日:2024-08-22

    申请号:US18652711

    申请日:2024-05-01

    Abstract: A velocity mismatch between optical signals and microwave electrical signals in electro-optic devices, such as modulators, may be compensated by utilizing different lengths of bends in the optical waveguides as compared to the microwave electrodes to match the velocity of the microwave signal propagating along the coplanar waveguide to the velocity of the optical signal. To ensure the electrode bends do not affect the light in the optical waveguide bends, the electrode may have to be rerouted, e.g. above or below, the optical waveguide layer. To ensure that the pair of optical waveguides have the same optical length, a waveguide crossing may be used to cross the first waveguide through the second waveguide.

    Distributed optical phase modulator

    公开(公告)号:US12025865B2

    公开(公告)日:2024-07-02

    申请号:US17639345

    申请日:2020-03-30

    CPC classification number: G02F1/0356 G02F1/0327 G02F2201/12 G02F2201/127

    Abstract: Provided is a distributed optical phase modulator, comprising: a substrate (10); an optical waveguide (20) arranged on the substrate (10); a drive electrode (30) that is arranged on the substrate (10) and comprises a plurality of sub drive electrodes (31) arranged at intervals; and at least one shielding electrode (40), wherein at least some shielding electrodes and the sub drive electrodes (31) are arranged at intervals. The optical waveguide (20) sequentially passes through the sub drive electrodes (31) and the shielding electrodes (40). The length of each part of the drive electrode (30) is far less than the total length of an equivalent traditional modulator, and the drive signal voltage of each part is also far less than the drive signal voltage of the equivalent traditional modulator. In each part of the drive electrode (30), the propagation of an optical signal and the propagation of an electrical signal can be approximately synchronous, even synchronous. The phenomenon of walk-off between the optical signal and the electrical signal is minimized, and the upper limit of a modulation bandwidth is improved. The shielding electrodes (40) are respectively arranged between the sub drive electrodes (31), so that crosstalk between the sub drive electrodes (31) can be shielded, and crosstalk between the sub drive electrodes (31) can be greatly reduced.

    TRAVELLING WAVE ELECTRO-OPTIC MODULATOR
    88.
    发明公开

    公开(公告)号:US20230384623A1

    公开(公告)日:2023-11-30

    申请号:US18324022

    申请日:2023-05-25

    Applicant: Axenic Limited

    Inventor: Rob Walker

    CPC classification number: G02F1/011 G02F2202/101 G02F2202/16 G02F2201/127

    Abstract: A travelling wave electro-optic modulator comprising



    a substrate;
    first and second parallel spaced apart electrode strips arranged on the substrate;
    first and second optical waveguides arranged on the substrate, the optical waveguides being positioned between the first and second electrode strips and extending parallel thereto;
    the first electrode strip comprising at least one portion extending proximate to the first optical waveguide;
    the second electrode strip comprising at least one portion extending proximate to the second optical waveguide;
    a semiconductive backplane layer arranged within the substrate and extending between the waveguides; and,
    a matched termination connected to the first and second electrode strips, the matched termination comprising

    (a) a serpentine electrically conductive strip arranged on the substrate and connecting the first and second electrode strips together; and,
    (b) a semiconductive backplane matching element, the backplane matching element comprising a plurality of semiconductive backplane plates connected together by at least one semiconductive backplane arm, the plates and at least one backplane arm being arranged within the substrate, the plates being arranged proximate to the electrode strips such that each electrode strip is capacitively coupled to at least one backplane plate;


    the serpentine electrically conductive strip being arranged such that at least a portion of its length is proximate to at least one backplane arm such that the two are electrically coupled together.

Patent Agency Ranking